
ARTICLE Communicated by Peter Foldiak

Slow Feature Analysis:
Unsupervised Learning of Invariances

Laurenz Wiskott
l.wiskott@biologie.hu-berlin.de
Computational Neurobiology Laboratory, Salk Institute for Biological Studies,
San Diego, CA 92168, U.S.A.; Institute for Advanced Studies, D-14193, Berlin,
Germany; and Innovationskolleg Theoretische Biologie, Institute for Biology,
Humboldt-University Berlin, D-10115 Berlin, Germany

Terrence J. Sejnowski
terry@salk.edu
Howard Hughes Medical Institute, The Salk Institute for Biological Studies,
La Jolla, CA 92037, U.S.A., and Department of Biology, University of California at
San Diego, La Jolla, CA 92037, U.S.A.

Invariant features of temporally varying signals are useful for analysis
and classification. Slow feature analysis (SFA) is a new method for learn-
ing invariant or slowly varying features from a vectorial input signal.
It is based on a nonlinear expansion of the input signal and applica-
tion of principal component analysis to this expanded signal and its time
derivative. It is guaranteed to find the optimal solution within a family
of functions directly and can learn to extract a large number of decor-
related features, which are ordered by their degree of invariance. SFA
can be applied hierarchically to process high-dimensional input signals
and extract complex features. SFA is applied first to complex cell tuning
properties based on simple cell output, including disparity and motion.
Then more complicated input-output functions are learned by repeated
application of SFA. Finally, a hierarchical network of SFA modules is
presented as a simple model of the visual system. The same unstructured
network can learn translation, size, rotation, contrast, or, to a lesser degree,
illumination invariance for one-dimensional objects, depending on only
the training stimulus. Surprisingly, only a few training objects suffice to
achieve good generalization to new objects. The generated representation
is suitable for object recognition. Performance degrades if the network is
trained to learn multiple invariances simultaneously.

1 Introduction

Generating invariant representations is one of the major problems in ob-
ject recognition. Some neural network systems have invariance properties

Neural Computation 14, 715–770 (2002) c© 2002 Massachusetts Institute of Technology

716 L. Wiskott and T. Sejnowski

built into the architecture. In both the neocognitron (Fukushima, Miyake, &
Ito, 1983) and the weight-sharing backpropagation network (LeCun et al.,
1989), for instance, translation invariance is implemented by replicating a
common but plastic synaptic weight pattern at all shifted locations and then
spatially subsampling the output signal, possibly blurred over a certain re-
gion. Other systems employ a matching dynamics to map representations
onto each other in an invariant way (Olshausen, Anderson, & Van Essen,
1993; Konen, Maurer, & von der Malsburg, 1994). These two types of sys-
tems are trained or applied to static images, and the invariances, such as
translation or size invariance, need to be known in advance by the designer
of the system (dynamic link matching is less strict in specifying the invari-
ance in advance; Konen et al., 1994). The approach described in this article
belongs to a third class of systems based on learning invariances from tem-
poral input sequences (Földiák, 1991; Mitchison, 1991; Becker, 1993; Stone,
1996). The assumption is that primary sensory signals, which in general
code for local properties, vary quickly while the perceived environment
changes slowly. If one succeeds in extracting slow features from the quickly
varying sensory signal, one is likely to obtain an invariant representation of
the environment.

The general idea is illustrated in Figure 1. Assume three different ob-
jects in the shape of striped letters that move straight through the visual
field with different direction and speed, for example, first an S, then an F,
and then an A. On a high level, this stimulus can be represented by three
variables changing over time. The first one indicates object identity, that is,
which of the letters is currently visible, assuming that only one object is
visible at a time. This is the what-information. The second and third vari-
able indicate vertical and horizontal location of the object, respectively. This
is the where-information. This representation would be particularly conve-
nient because it is compact and the important aspects of the stimulus are
directly accessible.

The primary sensory input—the activities of the photoreceptors in this
example—is distributed over many sensors, which respond only to simple
localized features of the objects, such as local gray values, dots, or edges.
Since the sensors respond to localized features, their activities will change
quickly, even if the stimulus moves slowly. Consider, for example, the re-
sponse of the first photoreceptor to the F. Because of the stripes, as the
F moves across the receptor by just two stripe widths, the activity of the
receptor rapidly changes from low to high and back again. This primary
sensory signal is a low-level representation and contains the relevant in-
formation, such as object identity and location, only implicitly. However, if
receptors cover the whole visual field, the visual stimulus is mirrored by
the primary sensory signal, and presumably there exists an input-output
function that can extract the relevant information and compute a high-level
representation like the one described above from this low-level representa-
tion.

Slow Feature Analysis 717

visual
field

3x (t)

1x (t)

2x (t)

right

left
bottom

top

S
A
F

time t

time t

time t

Primary sensory signal Object identity

Object 2D−location2
1

3
x

 (
t)

x
 (

t)
x

 (
t)

Stimulus

Figure 1: Relation between slowly varying stimulus and quickly varying sensor
activities. (Top) Three different objects, the letters S, F, and A, move straight
through the visual field one by one. The responses of three photoreceptors to
this stimulus at different locations are recorded and correspond to the gray value
profiles of the letters along the dotted lines. (Bottom left) Activities of the three
(out of many) photoreceptors over time. The receptors respond vigorously when
an object moves through their localized receptive field and are quiet otherwise.
High values indicate white; low values indicate black. (Bottom right) These
three graphs show a high-level representation of the stimulus in terms of object
identity and object location over time. See the text for more explanation.

718 L. Wiskott and T. Sejnowski

What can serve as a general objective to guide unsupervised learning
to find such an input-output function? One main difference between the
high-level representation and the primary sensory signal is the timescale on
which they vary. Thus, a slowly varying representation can be considered
to be of higher abstraction level than a quickly varying one. It is impor-
tant to note here that the input-output function computes the output signal
instantaneously, only on the basis of the current input. Slow variation of
the output signal can therefore not be achieved by temporal low-pass fil-
tering, but must be based on extracting aspects of the input signal that are
inherently slow and useful for a high-level representation. The vast majority
of possible input-output functions would generate quickly varying output
signals, and only a very small fraction will generate slowly varying output
signals. The task is to find some of these rare functions.

The primary sensory signal in Figure 1 is quickly varying compared to
the high-level representation, even though the components of the primary
sensory signal have extensive quiet periods due to the blank background of
the stimulus. The sensor of x1, for instance, responds only to the F, because
its receptive field is at the bottom right of the visual field. However, this illus-
trative example assumes an artificial stimulus, and under more natural con-
ditions, the difference in temporal variation between the primary sensory
signals and the high-level representation should be even more pronounced.

The graphs for object identity and object location in Figure 1 have gaps
between the linear sections representing the objects. These gaps need to be
filled in somehow. If that is done, for example, with some constant value,
and the graphs are considered as a whole, then both the object identity and
location vary on similar timescales, at least in comparison to the much faster
varying primary sensory signals. This means that object location and object
identity can be learned based on the objective of slow variation, which sheds
new light on the problem of learning invariances. The common notion is
that object location changes quickly while object identity changes slowly, or
rarely, and that the recognition system has to learn to represent only object
identity and ignore object location. However, another interpretation of this
situation is that object translation induces quick changes in the primary
sensory signal, in comparison to which object identity and object location
vary slowly. Both of these aspects can be extracted as slow features from the
primary sensory signal. While it is conceptionally convenient to call object
identity the what-information of the stimulus and object location the where-
information, they are of a similar nature in the sense that they may vary on
similar timescales compared to the primary sensory signal.

In the next two sections, a formal definition of the learning problem
is given, and a new algorithm to solve it is presented. The subsequent sec-
tions describe several sample applications. The first shows how complex cell
behavior found in visual cortex can be inferred from simple cell outputs.
This is extended to include disparity and direction of motion in the second
example. The third example illustrates that more complicated input-output

Slow Feature Analysis 719

functions can be approximated by applying the learning algorithm repeat-
edly. The fourth and fifth examples show how a hierarchical network can
learn translation and other invariances. In the final discussion, the algorithm
is compared with previous approaches to learning invariances.

2 The Learning Problem

The first step is to give a mathematical definition for the learning of in-
variances. Given a vectorial input signal x(t), the objective is to find an
input-output function g(x) such that the output signal y(t) := g(x(t)) varies
as slowly as possible while still conveying some information about the in-
put to avoid the trivial constant response. Strict invariances are not the goal,
but rather approximate ones that change slowly. This can be formalized as
follows:

Learning problem. Given an I-dimensional input signal x(t) = [x1(t), . . . ,
xI(t)]T with t ∈ [t0, t1] indicating time and [. . .]T indicating the transpose of
[. . .]. Find an input-output function g(x) = [g1(x), . . . , gJ(x)]T generating the
J-dimensional output signal y(t) = [y1(t), . . . , yJ(t)]T with yj(t) := gj(x(t))
such that for each j ∈ {1, . . . , J}

1j := 1(yj) := 〈ẏ2
j 〉 is minimal (2.1)

under the constraints

〈yj〉 = 0 (zero mean), (2.2)

〈y2
j 〉 = 1 (unit variance), (2.3)

∀ j′ < j: 〈yj′ yj〉 = 0 (decorrelation), (2.4)

where the angle brackets indicate temporal averaging, that is,

〈 f 〉 := 1
t1 − t0

∫ t1

t0

f (t) dt.

Equation 2.1 expresses the primary objective of minimizing the temporal
variation of the output signal. Constraints 2.2 and 2.3 help avoid the trivial
solution yj(t) = const. Constraint 2.4 guarantees that different output signal
components carry different information and do not simply reproduce each
other. It also induces an order, so that y1(t) is the optimal output signal
component, while y2(t) is a less optimal one, since it obeys the additional
constraint 〈y1 y2〉 = 0. Thus, 1(yj′) ≤ 1(yj) if j′ < j.

The zero mean constraint, 2.2, was added for convenience only. It could be
dropped, in which case constraint 2.3 should be replaced by 〈(yj−〈yj〉)2〉 =
1 to avoid the trivial solutions y1(t) = ±1. One can also drop the unit
variance constraint, 2.3, and integrate it into the objective, which would

720 L. Wiskott and T. Sejnowski

then be to minimize 〈ẏ2
j 〉/〈(yj−〈yj〉)2〉. This is the formulation used in (Becker

and Hinton 1992). However, integrating the two constraints (equations 2.2
and 2.3) in the objective function leaves the solution undetermined by an
arbitrary offset and scaling factor for yj. The explicit constraints make the
solution less arbitrary.

This learning problem is an optimization problem of variational calculus
and in general is difficult to solve. However, for the case that the input-
output function components gj are constrained to be a linear combination
of a finite set of nonlinear functions, the problem simplifies significantly.
An algorithm for solving the optimization problem under this constraint is
given in the following section.

3 Slow Feature Analysis

Given an I-dimensional input signal x(t) = [x1(t), . . . , xI(t)]T, consider an
input-output function g(x) = [g1(x), . . . , gJ(x)]T, each component of which
is a weighted sum over a set of K nonlinear functions hk(x): gj(x) := ∑K

k=1
wjkhk(x). Usually K > max(I, J). Applying h = [h1, . . . , hK]T to the in-
put signal yields the nonlinearly expanded signal z(t) := h(x(t)). After
this nonlinear expansion, the problem can be treated as linear in the ex-
panded signal components zk(t). This is a common technique to turn a non-
linear problem into a linear one. A well-known example is the support
vector machine (Vapnik, 1995). The weight vectors wj = [wj1, . . . ,wjK]T

are subject to learning, and the jth output signal component is given by
yj(t) = gj(x(t)) = wT

j h(x(t)) = wT
j z(t). The objective (see equation 2.1) is to

optimize the input-output function and thus the weights such that

1(yj) = 〈ẏ2
j 〉 = wT

j 〈żżT〉wj (3.1)

is minimal. Assume the nonlinear functions hk are chosen such that the
expanded signal z(t) has zero mean and a unit covariance matrix. Such a
set hk of nonlinear functions can be easily derived from an arbitrary set
h′k by a sphering stage, as will be explained below. Then we find that the
constraints (see equations 2.2–2.4)

〈yj〉 = wT
j 〈z〉︸︷︷︸
=0

= 0, (3.2)

〈y2
j 〉 = wT

j 〈zzT〉︸ ︷︷ ︸
=I

wj = wT
j wj = 1, (3.3)

∀ j′ < j: 〈yj′ yj〉 = wT
j′ 〈zzT〉︸ ︷︷ ︸
=I

wj = wT
j′wj = 0, (3.4)

are automatically fulfilled if and only if we constrain the weight vectors to
be an orthonormal set of vectors. Thus, for the first component of the input-

Slow Feature Analysis 721

output function, the optimization problem reduces to finding the normed
weight vector that minimizes 1(y1) of equation (3.1). The solution is the
normed eigenvector of matrix 〈żżT〉 that corresponds to the smallest eigen-
value (cf. Mitchison, 1991). The eigenvectors of the next higher eigenvalues
produce the next components of the input-output function with the next
higher 1 values. This leads to an algorithm for solving the optimization
problem stated above.

It is useful to make a clear distinction among raw signals, exactly nor-
malized signals derived from training data, and approximately normalized
signals derived from test data. Let x̃(t)be a raw input signal that can have any
mean and variance. For computational convenience and display purposes,
the signals are normalized to zero mean and unit variance. This normaliza-
tion is exact for the training data x(t). Correcting test data by the same offset
and factor will in general yield an input signal x′(t) that is only approx-
imately normalized, since each data sample has a slightly different mean
and variance, while the normalization is always done with the offset and
factor determined from the training data. In the following, raw signals have
a tilde, and test data have a dash; symbols with neither a tilde nor a dash
usually (but not always) refer to normalized training data.

The algorithm now has the following form (see also Figure 3):

1. Input signal. For training, an I-dimensional input signal is given by
x̃(t).

2. Input signal normalization. Normalize the input signal to obtain

x(t) := [x1(t), . . . , xI(t)]T (3.5)

with xi(t) := x̃i(t)− 〈x̃i〉√
〈(x̃i − 〈x̃i〉)2〉

, (3.6)

so that 〈xi〉 = 0, (3.7)

and 〈x2
i 〉 = 1. (3.8)

3. Nonlinear expansion. Apply a set of nonlinear functions h̃(x) to gen-
erate an expanded signal z̃(t). Here all monomials of degree one (re-
sulting in linear SFA sometimes denoted by SFA1) or of degree one and
two including mixed terms such as x1x2 (resulting in quadratic SFA
sometimes denoted by SFA2) are used, but any other set of functions
could be used as well. Thus, for quadratic SFA,

h̃(x) := [x1, . . . , xI, x1x1, x1x2, . . . , xIxI]T, (3.9)

z̃(t) := h̃(x(t)) = [x1(t), . . . , xI(t), x1(t)x1(t),

x1(t)x2(t), . . . , xI(t)xI(t)]T. (3.10)

Using first- and second-degree monomials, h̃(x) and z̃(t) are of dimen-
sionality K = I + I(I + 1)/2.

722 L. Wiskott and T. Sejnowski

� 2

� 1

0

1

2

x1 t

� 1 0 1
x2 t 0 1 2

z
�

3 t
� 1 0 1

z
�

2 t

� 2

� 1

0

1

2

z
�

1 t

1

� 1

0

1

y t

0 � 2�
t

g x1,x2

� 2

� 1

0

1

2

x1

� 1 0 1
x2

� 1 0 1
z3 t

� 1 0 1
z2 t

� 1

0

1

z1 t

1
� 15 0 15

z
�

3 t
� 15 0 15

z
�

2 t

� 15

0

15

z
�

1 t

w1
� axis

15

~

.

a) Input signal x(t) b) Expanded signal z(t)

d) Time derivative signal z(t)c) Sphered expanded signal z(t)

f) Input−output function g(x)e) Output signal y(t)

Slow Feature Analysis 723

4. Sphering. Normalize the expanded signal z̃(t) by an affine trans-
formation to generate z(t) with zero mean and identity covariance
matrix I,

z(t) := S (z̃(t)− 〈z̃〉), (3.11)

with 〈z〉 = 0 (3.12)

and 〈z zT〉 = I. (3.13)

This normalization is called sphering (or whitening). Matrix S is the
sphering matrix and can be determined with the help of principal
component analysis (PCA) on matrix (z̃(t)−〈z̃〉). It therefore depends
on the specific training data set. This also defines

h(x) := S (h̃(x)− 〈z̃〉), (3.14)

which is a normalized function, while z(t) is the sphered data.

5. Principal component analysis. Apply PCA to matrix 〈ż żT〉. The J
eigenvectors with lowest eigenvalues λj yield the normalized weight
vectors

wj: 〈ż żT〉wj = λjwj (3.15)

with λ1 ≤ λ2 ≤ · · · ≤ λJ, (3.16)

which provide the input-output function

g(x) := [g1(x), . . . , gJ(x)]T (3.17)

with gj(x) := wT
j h(x) (3.18)

Figure 2: Facing page. Illustration of the learning algorithm by means of
a simplified example. (a) Input signal x̃(t) is given by x̃1(t) := sin(t) +
cos2(11 t), x̃2(t) := cos(11 t), t ∈ [0, 2π], where sin(t) constitutes the slow
feature signal. Shown is the normalized input signal x(t). (b) Expanded
signal z̃(t) is defined as z̃1(t) := x1(t), z̃2(t) := x2(t), and z̃3(t) := x2

2(t). x2
1(t)

and x1(t)x2(t) are left out for easier display. (c) Sphered signal z(t) has zero
mean and unit covariance matrix. Its orientation in space is algorithmically
determined by the principal axes of z̃(t) but otherwise arbitrary. (d) Time
derivative signal ż(t). The direction of minimal variance determines the
weight vector w1. This is the direction in which the sphered signal z(t)
varies most slowly. The axes of next higher variance determine the weight
vectors w2 and w3, shown as dashed lines. (e) Projecting the sphered signal
z(t) onto the w1-axis yields the first output signal component y1(t), which
is the slow feature signal sin(t). (f) The first component g1(x1, x2) of the
input-output function derived by the steps a to e is shown as a contour
plot.

724 L. Wiskott and T. Sejnowski

and the output signal

y(t) := g(x(t)) (3.19)

with 〈y〉 = 0, (3.20)

〈y yT〉 = I, (3.21)

and 1(yj) = 〈ẏ2
j 〉 = λj. (3.22)

The components of the output signal have exactly zero mean, unit
variance, and are uncorrelated.

6. Repetition. If required, use the output signal y(t) (or the first few
components of it or a combination of different output signals) as an
input signal x(t) for the next application of the learning algorithm.
Continue with step 3.

7. Test. In order to test the system on a test signal, apply the normaliza-
tion and input-output function derived in steps 2 to 6 to a new input
signal x̃′(t). Notice that this test signal needs to be normalized with
the same offsets and factors as the training signal to reproduce the
learned input-output relation accurately. Thus, the training signal is
normalized only approximately to yield

x′(t) := [x′1(t), . . . , x′I(t)]
T (3.23)

with x′i(t) := x̃′i(t)− 〈x̃i〉√
〈(x̃i − 〈x̃i〉)2〉

, (3.24)

so that 〈x′i〉 ≈ 0, (3.25)

and 〈x′i2〉 ≈ 1. (3.26)

The normalization is accurate only to the extent the test signal is rep-
resentative for the training signal. The same is true for the output
signal

y′(t) := g(x′(t)) (3.27)

with 〈y′〉 ≈ 0, (3.28)

and 〈y′ y′T〉 ≈ I. (3.29)

For practical reasons, singular value decomposition is used in steps 4 and 5
instead of PCA. Singular value decomposition is preferable for analyzing
degenerate data in which some eigenvalues are very close to zero, which
are then discarded in Step 4. The nonlinear expansion sometimes leads
to degenerate data, since it produces a highly redundant representation
where some components may have a linear relationship. In general, signal
components with eigenvalues close to zero typically contain noise, such as
rounding errors, which after normalization is very quickly fluctuating and

Slow Feature Analysis 725

21

1 2 3

1 2 3

w h (x)11 1
~ ~ w h (x)515

~ ~ w h (x)35 5
~ ~

w 10
~

1
~

input signal x(t)

output signal y(t)

non−linear units g(x)

modifyable weights w

clusters h(x)
non−linear synaptic

~

bias

y (t) y (t) y (t)

x (t) x (t)

g (x)g (x) g (x)

~
15w~

11w ~
35w~

10w

linear synapses

non−linear synaptic
clusters

input signal x(t)

modifyable weights w

non−linear units h(x)

~

1

bias

x (t)x (t)

h (x) h (x) h (x) h (x) h (x)

z (t)z (t)z (t)z (t)z (t)~ ~ ~ ~ ~

~~~~~

1 2 3 4 5

1 2

1 2 3 4 5

output signal y(t)

linear units g(z)~

y  (t) y  (t) y  (t)

g  (z)g  (z) g  (z)~ ~ ~

1 2 3

321

~

Figure 3: Two possible network structures for performing SFA. (Top) Interpre-
tation as a group of units with complex computation on the dendritic trees (thick
lines), such as sigma-pi units. (Bottom) Interpretation as a layered network of
simple units with fixed nonlinear units in the hidden layer, such as radial basis
function networks with nonadaptable hidden units. In both cases, the input-
output function components are given by gj(x) = wT

j h(x) = w̃j0 + w̃T
j h̃(x), with

appropriate raw weight vectors w̃j. The input signal components are assumed
to be normalized here.

would not be selected by SFA in Step 5 in any case. Thus, the decision as to
which small components should be discarded is not critical.

It is useful to measure the invariance of signals not by the value of 1
directly but by a measure that has a more intuitive interpretation. A good



726 L. Wiskott and T. Sejnowski

measure may be an index η defined by

η(y) := T
2π

√
1(y) (3.30)

for t ∈ [t0, t0+T]. For a pure sine wave y(t) := √2 sin(n 2π t/T)with an inte-
ger number of oscillations n the index η(y) is just the number of oscillations,
that is, η(y) = n.1 Thus, the index η of an arbitrary signal indicates what
the number of oscillations would be for a pure sine wave of same 1 value,
at least for integer values of η. Low η values indicate slow signals. Since
output signals derived from test data are only approximately normalized,
η(y′) is meant to include an exact normalization of y′ to zero mean and unit
variance, to make the η index independent of an accidental scaling factor.

3.1 Neural Implementation. The SFA algorithm is formulated for a train-
ing input signal x(t) of definite length. During learning, it processes this
signal as a single batch in one shot and does not work incrementally, such
as on-line learning rules do. However, SFA is a computational model for
neural processing in biological systems and can be related to two standard
network architectures (see Figure 3). The nonlinear basis functions h̃k(x) can,
for instance, be considered as synaptic clusters on the dendritic tree, which
locally perform a fixed nonlinear transformation on the input data and can
be weighted independent of other synaptic clusters performing other but
also fixed nonlinear transformations on the input signal (see Figure 3, top).
Sigma-pi units (Rumelhart, Hinton, & McClelland, 1986), for instance, are
of this type. In another interpretation, the nonlinear basis functions could
be realized by fixed nonlinear units in a hidden layer. These then provide
weighted inputs to linear output units, which can be trained (Figure 3, bot-
tom). The radial basis function network with nonadaptable basis functions is
an example of this interpretation (cf. Becker & Hinton, 1995; see also Bishop,
1995, for an introduction to radial basis function networks). Depending on
the type of nonlinear functions used for h̃k(x), the first or the second in-
terpretation is more appropriate. Lateral connections between the output

1 For symmetry reasons and since (
√

2 sin(x))2 + (√2 cos(x))2 = 2, it is evident that
〈y〉 = 0 and 〈y2〉 = 1 if averaging y(t) := √2 sin(n 2π t/T) over t ∈ [t0, t0 + T], that is, over
an integer number of oscillations n. Setting t0 = 0 without loss of generality, we find that

1(y) = 〈ẏ2〉 = 1
T

∫ T

0
2

n24π2

T2
cos2(n 2π t/T) dt = n24π2

T2

1
n 2π

∫ n 2π

0
2 cos2(t′) dt′ = n24π2

T2

and

η(y) = T
2π

√
1(y) = T

2π

√
n24π2

T2
= n.



Slow Feature Analysis 727

units gj, either only from lower to higher units as shown in the figure or be-
tween all units, are needed to decorrelate the output signal components by
some variant of anti-Hebbian learning (see Becker & Plumbley, 1996, for an
overview). Each of these two networks forms a functional unit performing
SFA. In the following we will refer to such a unit as an SFA module, modeled
by the algorithm described above.

4 Examples

The properties of the learning algorithm are now illustrated by several ex-
amples. The first example is about learning response behavior of complex
cells based on simple cell responses (simple and complex cells are two types
of cells in primary visual cortex). The second one is similar but also includes
estimation of disparity and motion. One application of slow feature analy-
sis is sufficient for these two examples. The third example is more abstract
and requires a more complicated input-output function, which can be ap-
proximated by three SFAs in succession. This leads to the fourth example,
which shows a hierarchical network of SFA modules learning translation
invariance. This is generalized to other invariances in example 5. Each ex-
ample illustrates a different aspect of SFA; all but the third example also
refer to specific learning problems in the visual system and present possible
solutions on a computational level based on SFA, although these examples
do not claim to be biologically plausible in any detail. All simulations were
done with Mathematica.

4.1 Examples 1 and 2: Complex Cells, Disparity, and Motion Estima-
tion. The first two examples are closely related and use subsets of the same
data. Consider five monocular simple cells for the left and right eyes with
receptive fields, as indicated in Figure 4. The simple cells are modeled by
spatial Gabor wavelets (Jones & Palmer, 1987), whose responses x̃(t) to a
visual stimulus smoothly moving across the receptive field are given by a
combination of nonnegative amplitude ã(t) and phase φ̃(t) both varying in
time: x̃(t) := ã(t) sin(φ̃(t)).

The output signals of the five simple cells shown in Figure 4 are mod-
eled by

x̃1(t) := (4+ a0(t)) sin(t+ 4φ0(t)), (4.1)

x̃2(t) := (4+ a1(t)) sin(t+ 4φ1(t)), (4.2)

x̃3(t) := (4+ a1(t)) sin(t+ 4φ1(t)+ π/4), (4.3)

x̃4(t) := (4+ a1(t)) sin(t+ 4φ1(t)+ π/2+ 0.5φD(t)), (4.4)

x̃5(t) := (4+ a1(t)) sin(t+ 4φ1(t)+ 3π/4+ 0.5φD(t)), (4.5)



728 L. Wiskott and T. Sejnowski

x  (t)2
~

x  (t)3
~

x  (t)4
~

x  (t)5
~

t

x 1
t

	 
 33.36

t

x 2
t

	 
 32.71

t

x 3
t

	 
 35.03

t

x 5
t

	 
 30.95

t
x 1

0
t

	 
 30.95

x1 t

x 2
t

x2 t

x 3
t

x3 t

x 5
t

x5 t

x 1
0

t

−

−
+

+

Simple cell receptive fields in left and right eye

left eye right eyex  (t)1
~

Input signal x(t)  (normalized simple cell output signals)

Figure 4 (Examples 1 and 2): (Top) Receptive fields of five simple cells for left
and right eye, which provide the input signal x̃(t). (Bottom) Selected normalized
input signal components xi(t) plotted versus time and versus each other. All
graphs range from −4 to +4; time axes range from 0 to 4π .

t ∈ [0, 4π ]. All signals have a length of 512 data points, resulting in a step size
of 1t = 4π/512 between successive data points. The amplitude and phase
modulation signals are low-pass filtered gaussian white noise normalized
to zero mean and unit variance. The width σ of the gaussian low-pass fil-
ters is 30 data points for φD(t) and 10 for the other four signals: a0(t), a1(t),
φ0(t), and φ1(t). Since the amplitude signals a0(t) and a1(t) have positive and
negative values, an offset of 4 was added to shift these signals to a positive
range, as required for amplitudes. The linear ramp t within the sine ensures
that all phases occur equally often; otherwise, a certain phase would be
overrepresented because the phase signals φ0(t) and φ1(t) are concentrated
around zero. The factor 4 in front of the phase signals ensures that phase
changes more quickly than amplitude. The raw signals x̃1(t), . . . , x̃5(t) are



Slow Feature Analysis 729

normalized to zero mean and unit variance, yielding x1(t), . . . , x5(t). Five
additional signal components are obtained by a time delay of 1 data point:
x6(t) := x1(t − 1t), . . . , x10(t) := x5(t − 1t). Some of these 10 signals are
shown in Figure 4 (bottom), together with some trajectory plots of one com-
ponent versus another. The η value of each signal as given by equation 3.30
is shown in the upper right corner of the signal plots.

Since the first simple cell has a different orientation and location from the
others, it also has a different amplitude and phase modulation. This makes
it independent, as can be seen from trajectory plot x2(t) versus x1(t), which
does not show any particular structure. The first simple cell serves only as
a distractor, which needs to be ignored by SFA.

The second and third simple cells have the same location, orientation,
and frequency. They therefore have the same amplitude and phase modula-
tion. However, the positive and negative subregions of the receptive fields
are slightly shifted relative to each other. This results in a constant phase
difference of 45◦(π/4) between these two simple cells. This is reflected in the
trajectory plot x3(t) versus x2(t) by the elliptic shape (see Figure 4). Notice
that a phase difference of 90◦(π/2) would be computationally more conve-
nient, but is not necessary here. If the two simple cells had a phase difference
of 90◦, like sine- and cosine-Gabor wavelets, the trajectory would describe
circles, and the square of the desired complex cell response a1(t) would be
just the square sum x2

2(t)+ x2
3(t). Since the phase difference is 45◦, the trans-

formation needs to be slightly more complex to represent the elliptic shape
of the x3(t)-x2(t)-trajectory.

The fourth and fifth simple cells have the same relationship as the second
and third one do, but for the right eye instead of the left eye. If the two
eyes received identical input, the third and and fifth simple cell would also
have this relationship—the same amplitude and phase modulation with a
constant phase difference. However, disparity induces a shift of the right
image versus the left image, which results in an additional slowly varying
phase difference φD(t). This leads to the slowly varying shape of the ellipses
in trajectory plot x5(t) versus x3(t), varying back and forth between slim
left-oblique ellipses over circles to slim right-oblique ellipses. This phase
difference between simple cell responses of different eyes can be used to
estimate disparity (Theimer & Mallot, 1994).

Since x10(t) is a time-delayed version of x5(t), the vertical distance from
the diagonal in the trajectory plot x10(t) versus x5(t) in Figure 4 is related
to the time derivative of x5(t). Just as the phase difference between corre-
sponding simple cells of different eyes can be used to estimate disparity,
phase changes over time can be used to estimate direction and speed of
motion of the visual stimulus (Fleet & Jepson, 1990).

In the first example, x1(t), x2(t), and x3(t) serve as an input signal. Only
the common amplitude modulation a1(t) of x2(t) and x3(t) represents a slow
feature and can be extracted from this signal. Example 2 uses all five normal-
ized simple cell responses, x1(t), . . . , x5(t), plus the time-delayed versions



730 L. Wiskott and T. Sejnowski

of them, x6(t) := x1(t−1t), . . . , x10(t) := x5(t−1t). Several different slow
features, such as motion and disparity, can be extracted from this richer
signal.

Example 1. Consider the normalized simple cell responses x1(t), x2(t),and
x3(t) as an input signal for SFA. Figure 5 (top) shows the input signal trajec-
tories already seen in Figure 4, cross-sections through the first three compo-
nents of the learned input-output function g(x) (arguments not varied are
not listed and set to zero, e.g., g1(x2, x3) means g1(0, x2, x3)), and the first
three components of the extracted output signal y(t). The first component
of the input-output function represents the elliptic shape of the x3(t)-x2(t)-
trajectory correctly and ignores the first input signal component x1(t). It
therefore extracts the amplitude modulation a1(t) (actually the square of
it) as desired and is insensitive to the phase of the stimulus (cf. Figure 5,
bottom right). The correlation2 r between a1(t) and−y1(t) is 0.99. The other
input-output function and output signal components are not related to slow
features and can be ignored. This becomes clear from the η values of the out-
put signal components (see Figure 5, bottom left). Only η(y1) is significantly
lower than those of the input signal. Phase cannot be extracted, because it
is a cyclic variable. A reasonable representation of a cyclic variable would
be its sine and cosine value, but this would be almost the original signal
and is therefore not a slow feature. When trained and tested on signals of
length 16π (2048 data points), the correlation is 0.981±0.004 between a1(t)
and±y1(t) (training data) and 0.93±0.04 between a′1(t) and±y′1(t) (test data)
(means over 10 runs ± standard deviation).

Example 2. The previous example can be extended to binocular input
and the time domain. The input signal is now given by all normalized
simple cell responses described above and the time-delayed versions of
them: x1(t), . . . , x10(t). Since the input is 10-dimensional, the output sig-
nal of a second-degree polynomial SFA can be potentially 65-dimensional.
However, singular value decomposition detects two dimensions with zero
variance—the nonlinearly expanded signal has two redundant dimensions,
so that only 63 dimensions remain. The η values of the 63 output signal com-
ponents are shown in Figure 6 (top left). Interestingly, they grow almost
linearly with index value j. Between 10 and 16 components vary signifi-
cantly more slowly than the input signal. This means that in contrast to
the previous example, there are now several slow features being extracted
from the input signal. These include elementary features, such as amplitude
(or complex cell response) a1(t) and disparity φD(t), but also more complex

2 A correlation coefficient r between two signals a(t) and b(t) is defined as r(a, b) :=
〈(a− 〈a〉)(b− 〈b〉)〉/

√
〈(a− 〈a〉)2〉〈(b− 〈b〉)2〉. Since the signs of output signal components

are arbitrary, they will be corrected if required to obtain positive correlations, which is
particularly important for averaging over several runs of an experiment.



Slow Feature Analysis 731

x1 t

x 2
t

x2 t

x 3
t

x1

x 2

g1 x1,x2

x2
x 3

g1 x2,x3

x1
x 2

g2 x1,x2

x2

x 3

g2 x2,x3

x1

x 2

g3 x1,x2

x2

x 3

g3 x2,x3

t

y 1
t

� � 6.52

t

y 2
t

� � 30.37

t
y 3

t

� � 31.53

t

a 1
t

 � 6.61

t

� y
1

t

 � 6.52

a1 t

� y
1

t

r � 0.99

0 2 4 6 8 10
i,j

0

10

20

30

40

50

60

70

�

� a1

0 2 4 6 8 10
i,j

0

10

20

30

40

50

60

70

�

� yj

� xi

η−values of x(t) and y(t)

signal y(t)
Output

In
pu

t s
ig

na
l x

(t
)

Input−output function g(x)

1 1Correlation a (t) vs. y (t)

Figure 5 (Example 1): Learning to extract complex cell response a1(t) from nor-
malized simple cell responses x1(t), x2(t), and x3(t). (Top) First three components
of the learned input-output function g(x), which transforms the input signal x(t)
into the output signal y(t). All signal components have unit variance, and all
graphs range from−4 to+4, including the gray-value scale of the contour plots.
The thick contour lines indicate the value 0, and the thin ones indicate ±2 and
±4; white is positive. Time axes range from 0 to 4π . (Bottom left) η values of the
input and the output signal components. Only y1 is a relevant invariant. η(a1)

is shown at i, j = 0 for comparison. (Bottom right) −y1(t) correlates well with
amplitude a1(t).



732 L. Wiskott and T. Sejnowski

ones, such as phase change φ̇1(t) (which is closely related to the velocity
of stimulus movement), the square of disparity φ2

D(t), or even the product
φD(t)ȧ1(t) and other nonlinear combinations of the phase and amplitude
signals that were used to generate the input signal. If so many slow fea-
tures are extracted, the decorrelation constraint is not sufficient to isolate
the slow features into separate components. For instance, although the mo-
tion signal φ̇1(t) is mainly represented by −y8(t) with a correlation of 0.66,
part of it is also represented by −y5(t) and −y6(t) with correlations of 0.34
and 0.33, respectively. This is inconvenient but in many cases not critical.
For example, for a repeated application of SFA, such as in the following
examples, the distribution of slow features over output signal components
is irrelevant as long as they are concentrated in the first components. We
can therefore ask how well the slow features are encoded by the first 14
output components, for instance. Since the output signals obtained from
training data form an orthonormal system, the optimal linear combination
to represent a normalized slow signal s(t) is given by

Ỹ14[s](t) :=
14∑
j=1

〈s yj〉 yj(t), (4.6)

where Ỹl indicates a projection operator onto the first l output signal compo-
nents. Normalization to zero mean and unit variance yields the normalized
projected signal Y14[s](t). The correlation of φ̇1(t) with Y14[φ̇1](t) is 0.94.

Figure 6 and Table 1 give an overview over some slow feature signals
and their respective correlations r with their projected signals. Since the test
signals have to be processed without explicit knowledge about the slow
feature signal s′ to be extracted, the linear combinations for test signals are
computed with the coefficients determined on the training signal, and we
write Ỹ′14[s](t) :=∑14

j=1〈s yj〉 y′j(t). Normalization yields Y′14[s](t).

4.2 Example 3: Repeated SFA. The first two examples were particularly
easy because a second-degree polynomial was sufficient to recover the slow
features well. The third example is more complex. First generate two random
time series, one slowly varying xs(t) and one fast varying xf (t) (gaussian
white noise, low-pass filtered with σ = 10 data points for xs and σ = 3
data points for xf ). Both signals have a length of 512 data points, zero mean,
and unit variance. They are then mixed to provide the raw input signal
x̃(t) := [xf , sin(2xf )+ 0.5xs]T, which is normalized to provide x(t). The task
is to extract the slowly varying signal xs(t).

The input-output function required to extract the slow feature xs cannot
be well approximated by a polynomial of degree two. One might therefore
use polynomials of third or higher degree. However, one can also repeat the
learning algorithm, applying it with second-degree polynomials, leading



Slow Feature Analysis 733

φDφD

φ
.
1 φ

.
1 φD 1a

. φD 1a
.

t

�� 1
t

� � 13.74

t

Y
14

�� 1
t

� � 14.94

� �
1 t

Y
14

�� 1
t r � 0.94

t

� D
t

a� 1
t

� � 13.09

t

Y
14

� D
a� 1

t � � 13.06

�
D t a�

1 t

Y
14

� D
a� 1

t r � 0.98

t

� D
t

� � 3.05

t

Y
14

� D
t

� � 5.24

�
D t

Y
14

� D
t r � 0.97

0 10 20 30 40 50 60
i,j

0

20

40

60

80

100

120

�

� � .
1

� a1

� �
D

0 10 20 30 40 50 60
i,j

0

20

40

60

80

100

120

�

� yj

� xi

η−values of x(t) and y(t) 14

14 14

Correlation      (t) vs. Y  [     ](t) 

Corr.     (t)    (t) vs. Y  [        ](t)Correlation    (t) vs. Y  [    ](t)

Figure 6 (Example 2): Learning to extract several slow features from normalized
simple cell responses x1, x2, . . . , x10. (Top left) η values of the input and the
output signal components. The first 14 output components were assumed to
carry relevant information about slow features. (Top right, bottom left, and
right) The first 14 output components contain several slow features: elementary
ones, such as disparity φD and phase variation φ̇1 (which is closely related to
motion velocity), and combinations of these, such as the product of disparity and
amplitude change φDȧ1. Shown are the slow feature signals, the optimal linear
combinations of output signal components, and the correlation trajectories of
the two.



734
L

.W
iskottand

T.Sejnow
ski

 

Table 1: (Example 2): η-Values and Correlations r for Various Slow Feature Signals s Under Different
Experimental Conditions.

Data s = φD s = φ2
D s = φ̇D s = a1 s = φ1 s = φ̇1 s = φDȧ1

Testing η(s′) 22 2.0 32 3.0 37 1.0 66 4.0 66 2.0 113 2.0 114 5.0
Testing SFA1 r(s′,Y′10[s]) −.03 .07 −.03 .07 −.02 .04 −.00 .08 .01 .05 −.01 .04 −.00 .06
Training SFA2 j∗ ≤ 14 1.0 0.0 2.1 0.3 2.8 0.4 4.0 0.0 6.0 4.2 7.9 1.2 8.7 2.1
Testing SFA2 r(s′,±y′j∗ ) .87 .02 .80 .07 .78 .11 .96 .01 .04 .02 .53 .12 .58 .12

Testing SFA2 r(s′,Y′14[s]) .88 .01 .89 .03 .89 .01 .98 .00 .02 .04 .85 .02 .89 .03
Training SFA2 r(s,Y14[s]) .90 .01 .91 .02 .90 .01 .99 .00 .22 .06 .87 .02 .91 .03

Note: SFA1 and SFA2 indicate linear and quadratic SFA, respectively. j∗ is the index of that output signal component
yj∗ among the first 14 that is best correlated with s on the training data. Yl[s] is an optimal linear combination of
the first l output signal components to represent s (see equation 4.6). All figures are means over 10 simulation
runs, with the standard deviation given in small numerals. Signal length was always 4096. We were particularly
interested in the signals φD (disparity), a1 (complex cell response), and φ̇1 (indicating stimulus velocity), but several
other signals get extracted as well, some of which are shown in the table. Notice that linear SFA with 10 input
signal components can generate only 10 output signal components and is obviously not sufficient to extract any
of the considered feature signals. For some feature signals, such as φD and a1, it is sufficient to use only the single
best correlated output signal component. Others are more distributed over several output signal components, for
example, φ̇1. Phase φ1 is given as an example of a feature signal that cannot be extracted, since it is a cyclic variable.



Slow Feature Analysis 735

to input-output functions of degree two, four, eight, sixteen, and so on. To
avoid an explosion of signal dimensionality, only the first few components
of the output signal of one SFA are used as an input for the next SFA. In
this example, only three components were propagated from one SFA to
the next. This cuts down the computational cost of this iterative scheme
significantly compared to the direct scheme of using polynomials of higher
degree, at least for high-dimensional input signals, for which polynomials
of higher degree become so numerous that they would be computationally
prohibitive.

Figure 7 shows input signal, input-output functions, and output signals
for three SFAs in succession (only the first two components are shown). The
plotted input-output functions always include the transformations com-
puted by previous SFAs. The approximation of g(x) to the sinusoidal shape
of the trajectories becomes better with each additional SFA; compare, for
instance, g2,2 with g3,1. The η values shown at the bottom left indicate
that only the third SFA extracts a slow feature. The first and second SFA
did not yield an η value lower than that of the input signal. For the first,
second, and third SFA, xs(t) was best correlated with the third, second
(with inverted sign), and first output signal component, with correlation
coefficients of 0.59, 0.61, and 0.97, respectively. The respective trajectory
plots are shown at the bottom right of Figure 7. Notice that each SFA was
trained in an unsupervised manner and without backpropagating error sig-
nals. Results for longer signals and multiple simulation runs are given in
Table 2.

The algorithm can extract not only slowly varying features but also rarely
varying ones. To demonstrate this, we tested the system with a binary signal
that occasionally switches between two possible values. To generate a rarely
changing feature signal xr(t), we applied the sign function to low-pass fil-
tered gaussian white noise and normalized the signal to zero mean and unit
variance. The σ of the gaussian low-pass filter was chosen to be 150 to make
the η-values of xr(t) similar to those of xs(t) in Table 2. Figure 8 shows the
rarely changing signal xr(t) and single best correlated output signal compo-
nents of the three SFAs in succession. For the first, second, and third SFA,
xr(t) was best correlated with the third, third, and first output signal com-
ponent, with corresponding correlation coefficients of 0.43, 0.69, and 0.97.
This is similar to the results obtained with the slowly varying feature signal
xs(t).

Table 2 shows results on training and test data for slowly and rarely vary-
ing feature signals of length 4096. They confirm that there is no significant
difference between slowly and rarely varying signals, given a comparable
η value. In both cases, even two quadratic SFAs in succession do not per-
form much better than one linear one. It is only the third quadratic SFA
that extracts the feature signal with a high correlation coefficient. As in the
previous example, results improve if a linear combination of several (three)
output signal components is used instead of just the single best one (this is



736 L. Wiskott and T. Sejnowski

xs t

� y
2,

2

r � 0.61

xs t

� y 3
,1

r � 0.97
t

x s
t

� � 7.49

xs t

� y 1
,3

r � 0.59

2 2

2

x1 t

x 2
t

t

x 1
t

 ! 27.79
t

x 2
t

 ! 41.38

x1

x 2

g1,1 x1,x2

x1

x 2

g1,2 x1,x2

t

y 1
,1

t

 ! 27.51

t

y 1
,2

t

 ! 40.15

x1

x 2

g2,1 x1,x2

x1

x 2

g2,2 x1,x2

t

y 2
,1

t

" # 27.09

t

y 2
,2

t

" # 35.08
x1

x 2

g3,1 x1,x2

x1

x 2

g3,2 x1,x2

t

y 3
,1

t

" # 17.87

t

y 3
,2

t

" # 27.62

0 2 4 6 8 10
i,j

0

20

40

60

80

$

% xf

% xs

0 2 4 6 8 10
i,j

0

20

40

60

80

$

& y3, j

& y2, j

& y1, j

& xi

−values of x(t) and y(t)η s

1×SFA : g(x) and y(t)2

2×SFA : g(x) and y(t) 3×SFA : g(x) and y(t)2 2

In
pu

t s
ig

na
l x

(t
)

Corr. x (t) vs. y(t) 

2×SFA , 3×SFA ,

1×SFA ,



Slow Feature Analysis 737

Table 2 (Example 3): Correlations r for Slowly (cf. Figure 7) and Rarely
(cf. Figure 8) Varying Feature Signals xs(t) and xr(t) with Output Signal
Components of Several SFAs in Succession.

Data 1×SFA1 1×SFA2 2×SFA2 3×SFA2 4×SFA2

Slowly varying signal xs(t) with η̄ = 66 1
Training j∗ ≤ 3 2.0 0.0 3.0 0.0 2.7 0.5 1.6 0.5 1.4 0.5
Testing r(x′s,±y′j∗ ) .61 .02 .59 .02 .65 .08 .81 .10 .85 .11

Testing r(x′s,Y′3[xs]) .60 .02 .60 .02 .69 .07 .87 .06 .86 .10
Training r(xs,Y3[xs]) .62 .01 .62 .01 .74 .05 .89 .05 .91 .05

Rarely changing signal xr(t) with η̄ = 66 8
Training j∗ ≤ 3 2.0 0.0 3.0 0.0 2.7 0.5 1.6 0.5 1.3 0.5
Testing r(x′r, y′j∗ ) .60 .01 .57 .06 .59 .10 .84 .08 .81 .17

Testing r(x′r,Y′3[xr]) .60 .01 .58 .06 .67 .10 .87 .08 .85 .17
Training r(xr,Y3[xr]) .61 .01 .62 .02 .73 .07 .91 .04 .94 .03

Note: SFA1 and SFA2 indicate linear and quadratic SFA, respectively. j∗ is the index of
that output signal component yj∗ among the first three, which is best correlated with
s on the training data (in all cases, j∗ was also optimal for the test data). Y3[s] is an
optimal linear combination of the first three output signal components to represent
s (see equation 4.6). All figures are means over 10 simulation runs with the standard
deviation given in small numerals. Signal length was always 4096.

strictly true only for training data, since on test data, the linear combination
from the training data is used).

4.3 Example 4: Translation Invariance in a Visual System Model.

4.3.1 Network Architecture. Consider now a hierarchical architecture as
illustrated in Figure 9. Based on a one-dimensional model retina with 65
sensors, layers of linear SFA modules with convergent connectivity alternate
with layers of quadratic SFA modules with direct connectivity. This division
into two types of sublayers allows us to separate the contribution of simple
spatial averaging from the contribution of nonlinear processing

Figure 7 (Example 3): Facing page. Hidden slowly varying feature signal discov-
ered by three SFAs in succession. (Top left) Input signal. (Top right and middle
left and right) One, two, and three SFAs in succession and their corresponding
output signals. First subscript refers to the number of the SFA; second subscript
refers to its component. The slow feature signal xs(t) is the slow up and down
motion of the sine curve in the trajectory plot x2(t) versus x1(t). (Bottom left)
η values of the input signal components and the various output signal com-
ponents. η(xs) and η(xf ) are shown at i, j = 0 for comparison. Only y3,1 can be
considered to represent a slow feature. (Bottom right) Slow feature signal xs(t)
and its relation to some output signal components. The correlation of xs(t)with
+y1,3(t), −y2,2(t), and +y3,1(t) is 0.59, 0.61, and 0.97, respectively.



738 L. Wiskott and T. Sejnowski

t

' y 1
,3

t
( ) 48.08

t

* y
2,

3
t

( ) 41.95

t

* y
3,

1
t

( ) 16.84

t

x r
t

( ) 10.76

Figure 8 (Example 3): Hidden rarely changing feature signal discovered by three
SFAs in succession.

to the generation of a translation-invariant object representation. It is clear
from the architecture that the receptive field size increases from bottom to
top, and therefore the units become potentially able to respond to more
complex features, two properties characteristic for the visual system (Oram
& Perrett, 1994).

4.3.2 Training the Network. In order to train the network to learn trans-
lation invariance, the network must be exposed to objects moving trans-
lationally through the receptive field. We assume that these objects cre-
ate fixed one-dimensional patterns moving across the retina with constant
speed and same direction. This ignores scaling, rotation, and so forth, which
will be investigated in the next section. The effects of additive noise are
studied here. The training and test patterns were low-pass filtered gaus-
sian white noise. The size of the patterns was randomly chosen from a
uniform distribution between 15 and 30 units. The low-pass filter was a
gaussian with a width σ randomly chosen from a uniform distribution be-
tween 2 and 5. Each pattern was normalized to zero mean and unit variance
to eliminate trivial differences between patterns, which would make ob-
ject recognition easier at the end. The patterns were always moved across
the retina with a constant speed of 1 spatial unit per time unit. Thus, for
a given pattern and without noise, the sensory signal of a single retinal
unit is an accurate image of the spatial gray-value profile of the pattern.
The time between one pattern being in the center of the retina and the
next one was always 150 time units. Thus, there was always a pause be-
tween the presentation of two patterns, and there were never two pat-
terns visible simultaneously. The high symmetry of the architecture and
the stimuli made it possible to compute the input-output function only for
one SFA module per layer. The other modules in the layer would have
learned the same input-output function, since they saw the same input, just
shifted by a time delay determined by the spatial distance of two modules.
This cut down computational costs significantly. Notice that this symme-
try also results in an implicit weight-sharing constraint, although this was
not explicitly implemented (see the next section for more general exam-



Slow Feature Analysis 739

1a

1b

2b

2a

3a

3b

4a

4b 2

1

2

1

2

1

2

1

retina 1

SFA

SFA

SFA

SFA

SFA

SFA

SFA

9

9

33

33

65 SFA

65

17

17

Figure 9 (Examples 4 and 5): A hierarchical network of SFA modules as a simple
model of the visual system learning translation and other invariances. Different
layers correspond to different cortical areas. For instance, one could associate
layers 1, 2, 3, and 4 with areas V1, V2, V4, and PIT, respectively. The retinal
layer has 65 input units, representing a receptive field that is only a part of the
total retina. The receptive field size of SFA modules is indicated at the left of
the left-most modules. Each layer is split into an a and a b sublayer for com-
putational efficiency and to permit a clearer functional analysis. The a modules
are linear and receive convergent input, from either nine units in the retina
or three neighboring SFA modules in the preceding layer. The b modules are
quadratic and receive input from only one SFA module. Thus, receptive field
size increases only between a b module and an a module but not vice versa.
The number of units per SFA module is variable and the same for all modules.
Only the layer 4b SFA module always has nine units to make output signals more
comparable. Notice that each module is independent of the neighboring and the
succeeding ones; there is no weight-sharing constraint and no backpropagation
of error.

ples). The sensory signals for some training and test patterns are shown in
Figure 10.

In the standard parameter setting, each SFA module had nine units; a
stimulus with 20 patterns was used for training, and a stimulus with 50 pat-
terns was used for testing; no noise was added. To improve generalization
to test patterns, all signals transferred from one SFA module to the next
were clipped at±3.7 to eliminate extreme negative and positive values. The
limit of±3.7 was not optimized for best generalization but chosen such that
clipping became visible in the standard display with a range of ±4, which
is not relevant for the figures presented here.



740 L. Wiskott and T. Sejnowski

t

x 1
t

+ , 34.68

t
x 1,

t

+ , 36.85

t

x 1,
t

+ , 77.49

Figure 10 (Example 4): Sensory signal of the central retinal unit in response to
three patterns. Since all patterns move with the same constant speed across the
retina, the sensory signals have the same shape in time as the patterns have
in space, at least for the noise-free examples.(Left) First three patterns of the
training sensory signal. Pattern characteristics are (29, 4.0), (25, 4.5), and (16, 3.1),
where the first numbers indicate pattern size and the second ones the width of
the gaussian low-pass filter used. (Middle) First three patterns of the test sensory
signal without noise. Pattern characteristics are (22, 3.1), (26, 3.8), and (24, 2.5).
(Right) Same test sensory signal but with a noise level of 1. With noise, the
sensory signals of different retinal units differ in shape and not only by a time
delay.

4.3.3 What Does the Network Learn? Figure 11 shows the first four com-
ponents of the output signals generated by the trained network in response
to three patterns of the training and test stimulus:

• Instantaneous feedforward processing: Once the network is trained,
processing is instantaneous. The output signal can be calculated mo-
ment by moment and does not require a continuously changing stim-
ulus. This is important, because it permits processing also of briefly
flashed patterns. However, it is convenient for display purposes to
show the response to moving patterns.

• No overfitting: The test output signal does not differ qualitatively from
the training output signal, although it is a bit noisier. This indicates
that 20 patterns are sufficient for training to avoid overfitting. How-
ever, clipping the signals as indicated above is crucial here. Otherwise,
signals that get slightly out of the usual working range are quickly
amplified to extreme values.

• Longer responses: The response of a layer 4b unit to a moving pattern
is longer than the response of a retinal sensor (compare Figures 10
and 11). This is due to the larger receptive field size. For a pattern of
size 20, a retinal sensor response has a length of 20, given a stimulus
speed of 1 spatial unit per time unit. A layer 4b unit responds to this
pattern as soon as it moves into the receptive field and until it leaves



Slow Feature Analysis 741

t

y 1
t

- . 3.89

t

y 2
t

- . 4.86

t

y 3
t

- . 5.46

t

y 4
t

- . 5.73

t

y 1,
t

/ 0 4.1

t

y 2,
t

/ 0 14.87

t

y 3,
t

/ 0 5.83

t

y 4,
t

/ 0 8.5

y1
, t

y 2,
t

y2
, t

y 3,
t

y3
, t

y 4,
t

y1
, t

y 3,
t

y2
, t

y 4,
t

y1
, t

y 4,
t

C

B

A

Figure 11 (Example 4): First four output signal components in response to three
patterns of (A) the training signal and (B) the test signal. (C) All respective
trajectory plots for the test signal. Time axes range from 0 to 3 × 150, all other
axes range from −4 to +4. All signals are approximately normalized to zero
mean and unit variance.



742 L. Wiskott and T. Sejnowski

it, resulting in a response of length 84 = 65 (receptive field size) + 20
(pattern size) −1.

• Translation invariance: The responses to individual patterns have a
shape similar to a half or a full sine wave. It may be somewhat sur-
prising that the most invariant response should be half a sine wave
and not a constant, as suggested in Figure 1. But the problem with a
constant response would be that it would require a sharp onset and
offset as the pattern moves into and out of the receptive field. Half
a sine wave is a better compromise between signal constancy in the
center and smooth onsets and offsets. Thus the output signal tends
to be as translation invariant as possible under the given constraints,
invariance being defined by equation 2.1.

• Where-information: Some components, such as the first and the third
one, are insensitive to pattern identity. Component 1 can thus be used
to determine whether a pattern is in the center or periphery of the re-
ceptive field. Similarly, component 3 can be used to determine whether
a pattern is more on the left or the right side. Taken together, compo-
nents 1 and 3 represent pattern location, regardless of other aspects
of the pattern. This becomes particularly evident from trajectory plot
y′3(t) versus y′1(t). These two components describe a loop in phase
space, each point on this loop corresponding to a unique location of
the pattern in the receptive field. y1(t) and y3(t) therefore represent
where-information.

• What-information: Some components, such as the second and fourth
one, do distinguish well among different patterns, despite the transla-
tion invariance. The response to a certain pattern can be positive or neg-
ative, strong or weak. A reasonable representation for pattern identity
can therefore be constructed as follows. Take components 1, 2, and 3,
and subtract the baseline response. This yields a three-dimensional re-
sponse vector for each moment in time, which is zero if no pattern is
present in the receptive field. As a pattern moves through the receptive
field, the amplitude of the response vector increases and decreases, but
its direction tends to change little. The direction of the response vector
is therefore a reasonable representation of pattern identity. This can be
seen in the three trajectory plots y′2(t) versus y′1(t), y′4(t) versus y′1(t),
and y′4(t) versus y′2(t). Ideally the response vector should describe a
straight line going from the baseline origin to some extreme point and
then back again to the origin. This is what was observed on training
data if only a few patterns were used for training. When training was
done with 20 patterns, the response to test data formed noisy loops
rather than straight lines. We will later investigate quantitatively to
what extent this representation permits translation-invariant pattern
recognition.



Slow Feature Analysis 743

Two aspects of the output signal were somewhat surprising. First, why
does the network generate a representation that distinguishes among
patterns, even though the only objective of slow feature analysis is to gener-
ate a slowly varying output? Second, why do where- and what-information
get represented in separate components, although this distinction has not
been built in the algorithm or the network architecture? This question is
particularly puzzling since we know from the second example that SFA
tends to distribute slow features over several components. Another appar-
ent paradox is the fact that where-information can be extracted at all by
means of the invariance objective, even though the general notion is that
one wants to ignore pattern location when learning translation invariance
(cf. section 1).

To give an intuitive answer to the first question, assume that the opti-
mal output components would not distinguish among patterns. The exper-
iments suggest that the first component would then have approximately
half-sine-wave responses for all patterns; the second component would
have full-sine-wave responses for all patterns, since a full sine wave is un-
correlated to a half sine wave and still slowly varying. It is obvious that a
component with half-sine-wave responses with different positive and neg-
ative amplitudes for different patterns can also be uncorrelated to the first
component but is more slowly varying than the component with full-sine-
wave responses only, which is in contradiction to the assumption. Thus, the
objective of slow variation in combination with the decorrelation constraint
leads to components’ differentiating among patterns.

Why where- and what-information gets represented in separate compo-
nents is a more difficult issue. The first where-component, y1(t), with half-
sine-wave responses, is probably distinguished by its low η-value, because
it is easier for the network to generate smooth responses if they do not dis-
tinguish between different patterns, at least for larger numbers of training
patterns. Notice that the what-components, y2(t) and y4(t), are noisier. It
is unclear why the second where-component, y3(t), emerges so reliably (al-
though not always as the third component) even though its η value is com-
parable to that of other what-components with half-sine-wave responses.
For some parameter regimes, such as fewer patterns or smaller distances
between patterns, no explicit where-components emerge. However, more
important than the concentration of where-information in isolated compo-
nents is the fact that the where-information gets extracted at all by the same
mechanism as the what-information, regardless of whether explicit where-
components emerged.

It is interesting to compare the pattern representation of the network
with the one sketched in Figure 1. We have mentioned that the sharp on-
sets and offsets of the sketched representation are avoided by the network,
leading to typical responses in the shape of a half or full sine wave. Inter-
estingly, however, if one divides Components 2 or 4 by Component 1 (all
components taken minus their resting value), one obtains signals similar to



744 L. Wiskott and T. Sejnowski

that suggested in Figure 1 for representing pattern identity: signals that are
fairly constant and pattern specific if a pattern is visible and undetermined
otherwise. If one divides component 3 by component 1, one obtains a signal
similar to those suggested in Figure 1 for representing pattern location: one
that is monotonically related to pattern location and undetermined if no
pattern is visible.

4.3.4 How Translation Invariant Is the Representation? We have argued
that the direction of the response vector is a good representation of the
patterns. How translation invariant is this representation? To address this
question, we have measured the angle between the response vector of a
pattern at a reference location and at all other valid locations. The location
of a pattern is defined by the location of its center (or the right center pixel
if the pattern has an even number of pixels). The retina has a width of 65,
ranging from −32 to +32 with the central sensor serving as the origin, that
is, location 0. The largest patterns of size 30 are at least partially visible from
location −46 up to +47. The standard location for comparison is −15. The
response vector is defined as a subset of output components minus their
resting values. For the output signal of Figure 11, for instance, the response
vector may be defined as r(t) := [y1(t)− y1(0), y2(t)− y2(0), y4(t)− y4(0)]T,
if components 1, 2, and 4 are taken into account and if at time t = 0
no pattern was visible and the output was at resting level. If not stated
otherwise, all components out of the nine output signal components that
were useful for recognition were taken for the response vectors. In Ex-
ample 4, the useful components were always determined on the train-
ing data based on recognition performance. Since at a given time tpl the
stimulus shows a unique pattern p at a unique location l, we can also
parameterize the response vector by pattern index p and location l and
write rp(l) := r(tpl). The angle between the response vectors of pattern p
at the reference location −15 and pattern p′ at a test location l is defined
as

ϑ(rp(−15), rp′(l)) :=arccos((rp(−15)·rp′(l))/(‖rp(−15) ‖‖rp′(l) ‖)), (4.7)

where r·r′ indicates the usual inner product and ‖r ‖ indicates the Euclidean
norm. Figure 12 shows percentiles for the angles of the response vectors
at a test location relative to a reference location for the 50 test patterns.

4.3.5 What is the Recognition Performance? If the ultimate purpose of the
network is learning a translation-invariant representation for pattern recog-
nition, we should characterize the network in terms of recognition perfor-
mance. This can be done by using the angles between response vectors as
a simple similarity measure. But instead of considering the raw recogni-
tion rates, we will characterize the performance in terms of the ranking of



Slow Feature Analysis 745

1 40 1 20 0 20 40
pattern center location

0

20

40

60

80

an
gl

e

Figure 12 (Example 4): Percentiles of the angles ϑ(rp(−15), rp(l)) between the
response vectors at a test location l and the reference location −15 for 50 test
patterns p. For this graph, components 1, 2, and 4 were used (cf. Figure 11).
The thick line indicates the median angle or 50th percentile. The dashed lines
indicate the smallest and largest angles. The bottom and top thin line indi-
cate the 10th and 90th percentiles, respectively. The white area indicates the
size of the retina (65 units). Gray areas indicate locations outside the retina.
Patterns presented at the edge between white and gray are only half visi-
ble to the retina. The average angle over the white area is 12.6 degrees. If
the vectors were drawn randomly, the average and median angle would be
90 degrees (except for the reference location where angles are always zero).
Thus, the angles are relatively stable over different pattern locations. Results
are very similar for the training patterns with an average angle of 11.3 de-
grees.

the patterns induced by the angles, since that is a more refined measure.
Take the response vectors of all patterns at the reference location −15 as
the stored models, which should be recognized. Then compare a response
vector rp′(l) of a pattern p′ at a test location l with all stored models rp(−15)
in terms of the enclosed angles ϑ(rp(−15), rp′(l)), which induce a ranking.
If ϑ(rp′(−15), rp′(l)) is smaller than all other angles ϑ(rp(−15), rp′(l)) with
p 6= p′, then pattern p′ can be recognized correctly at location l, and it is on
rank 1. If two other patterns have a smaller angle than pattern p′, then it
is on rank 3, and so on. Figure 13 illustrates how the ranking is induced,
and Figure 14 shows rank percentiles for all 20 training patterns and 50 test
patterns over all valid locations.



746 L. Wiskott and T. Sejnowski

y

4

2

Obj. 4 at −15
Obj. 2 at +15

Obj. 5 at −15

Obj. 2 at −15

Obj. 1 at +15

Obj. 1 at −15

Obj. 3 at −15

1
2

3 3

12

y

induces ranking
Obj. 4
Obj. 5
Obj. 2

.

.
Obj. 2
Obj. 3
Obj. 1

induces ranking

.

.

Figure 13 (Examples 4 and 5): Pattern recognition based on the angles of the
response vectors. Solid arrows indicate the response vectors for objects at the ref-
erence location. Dashed arrows indicate the response vectors for objects shown
at a test location. The angles between a dashed vector and the solid vectors in-
duce a ranking of the stored objects. If the correct object is at rank one, the object
is recognized correctly, as in case of Object 1 in the figure.

For the training patterns, there is a large range within which the median
rank is 1; at least 50% of the patterns would be correctly recognized. This
even holds for location +15, where there is no overlap between the pattern
at the test location and the pattern at the reference location. Performance
degrades slightly for the test patterns. The average ranks over all test loca-
tions within the retina (the white area in the graph) is 1.9 for the training
patterns and 6.9 for the test patterns. Since these average ranks depend on
the number of patterns, we will normalize them by subtracting 1 and di-
viding by the number of patterns minus 1. This gives a normalized average
rank between 0 and 1, 0 indicating perfect performance (always rank 1) and
1 indicating worst performance (always last rank). The normalized average
ranks for the graphs in Figure 14 are 0.05 and 0.12 for the training and test
patterns, respectively; chance levels were about 0.5. Notice that the simi-
larity measure used here is simple and gives only a lower bound for the
performance; a more sophisticated similarity measure can only do better.



Slow Feature Analysis 747

Figure 14 (Example 4): Rank percentiles for the 20 training patterns (top) and
50 test patterns (bottom) depending on the test location. For this graph, com-
ponents 1, 2, and 4 were used (cf. Figure 11). Conventions are as for Figure 12.
Performance is, of course, perfect at the reference location −15, but also rela-
tively stable over a large range. The average rank over the white area is 1.9 for
the training patterns and 6.2 for the test patterns. Perfect performance would
be 1 in both cases, and chance level would be approximately 10.5 and 25.5 for
training and test patterns, respectively.



748 L. Wiskott and T. Sejnowski

2 5 10 20 40
number of training patterns

0

0.1

0.2

0.3

0.4

0.5
no

rm
al

iz
ed

av
er

ag
e

ra
nk 2.

3.
3.8

5.
5.2

3.6 3.6

Figure 15 (Example 4): Dependence of network performance on the number of
training patterns. The standard number was 20. The ordinate indicates normal-
ized average rank; the abscissa indicates the considered parameter—the number
of training patterns in this case. Gray and black curves indicate performance on
training and test data, respectively. Solid curves indicate results obtained with
two-layer 4b output signal components only; dashed curves indicate results ob-
tained with as many components out of the first nine components as were useful
for recognition. The useful components were determined on the training data
based on recognition performance. The average number of components used
for the dashed curves is shown above. Each point in the graph represents the
mean over five different simulation runs; the standard deviation is indicated
by small bars. The curves are slightly shifted horizontally to let the standard
deviation bars not overlap. Twenty training patterns were sufficient, and even
five training patterns produced reasonable performance.

4.3.6 How Does Performance Depend on Number of Training Patterns, Net-
work Complexity, and Noise Level? Using the normalized average rank as
a measure of performance for translation-invariant pattern recognition,
we can now investigate the dependence on various parameters. Figure 15
shows the dependence on the number of training patterns. One finds that 20
training patterns are enough to achieve good generalization; performance
does not degrade dramatically down to five training patterns. This was sur-
prising, since translation-invariant recognition appears to be a fairly com-
plex task.

Figure 16 shows the dependence of network performance on the num-
ber of components used in the SFA modules. The standard was nine for all
modules. In this experiment, the number of components propagated from



Slow Feature Analysis 749

1 2 3 4 5 6 7 8 9
number of propagated components

0

0.1

0.2

0.3

0.4

0.5
no

rm
al

iz
ed

av
er

ag
e

ra
nk

2.

2.

3.8

2.8 3.2

3.6
3.6

Figure 16 (Example 4): Dependence of network performance on the number of
components propagated from one module to the next. Standard value was 9.
Conventions are as for Figure 15. Performance degraded slowly down to four
components per module and more quickly for fewer components.

one module to the next one was stepwise reduced to just one. At the top
level, however, usually nine components were used to make results more
comparable. In the case of one and two components per module, how-
ever, only two and five components were available in the layer 4b module,
respectively. Performance degraded slowly down to four components per
module; below that, performance degraded quickly. With one component,
the normalized average rank was at chance level. One can expect that per-
formance would improve slightly with more than nine components per
module. With one and two components per module, there were always two
clear components in the output signal useful for recognition. With three
components per module, the useful information began to mix with compo-
nents not useful, so that performance actually degraded from two to three
components per module.

SFA should not be too sensitive to noise, because noise would yield
quickly varying components that are ignored. To test this, we added gaus-
sian white noise with different variance to the training and test signals.
A sensory signal with a noise level of 1 is shown in Figure 10. The noise
was independent only for nine adjacent sensors feeding into one SFA mod-
ule. Because in the training procedure, only one module per layer was being
trained, all modules in one layer effectively saw the same noise, but delayed
by 4, 8, 12, and so on time units. However, since the network processed the



750 L. Wiskott and T. Sejnowski

0 0.5 1 1.5 2
noise level

0

0.1

0.2

0.3

0.4

0.5
no

rm
al

iz
ed

av
er

ag
e

ra
nk 2.2

2.6

2.4

2.83.8

3.6

Figure 17 (Example 4): Dependence of network performance on the added noise
level. Standard value was 0. Conventions are as for Figure 15. Performance
degrades gracefully until it approaches chance level at a noise level of 2. A
sensory signal with noise level 1 is shown in Figure 10.

input instantaneously, it is unlikely that the delayed reoccurence of noise
could be used to improve the robustness. Figure 17 shows the dependence
of performance on noise level. The network performance degraded grace-
fully.

4.3.7 What is the Computational Strategy for Achieving Translation Invari-
ance? How does the network achieve translation invariance? This ques-
tion can be answered at least for a layer 1b SFA module by visualizing
its input-output function (not including the clipping operation from the
1a to the 1b module). At that level, the input-output function is a polyno-
mial of nine input components, for example, x−4, x−3, . . . , x4, and degree 2;
it is a weighted sum over all first- and second-degree monomials. Let us
now define a center location and a spread for each monomial. For second-
degree monomials, the spread is the difference between the indices of the
two input components; its center location is the average over the two in-
dices. For first-degree monomials, the spread is 0, and the center location
is the index. Thus, x−3x0 has a spread of 3 and center location −1.5, x3x3
has a spread of 0 and center location 3, and x−2 has a spread of 0 and
center location −2. Figure 18 shows the weights or coefficient values of
the monomials for the first two components of the input-output function
learned by the central layer 1b SFA module, including the contribution of



Slow Feature Analysis 751

Figure 18 (Example 4): Visualization of the first two components, g1(x) (top)
and g2(x) (bottom), of the input-output function realized by the central SFA
module of layer 1b. Black dots indicate the coefficient values of the second-
degree monomials at their center location. Dots related to monomials of the same
spread are connected by dashed lines, dense dashing indicating a small spread
and wide dashing indicating a large spread. The spread can also be inferred from
the number of dots connected, since there are nine monomials with spread 0,
eight monomials with spread 1, and so on. The thick line indicates the coefficient
values of the first-degree monomials. Second-order features get extracted, and
coefficient values related to same spread vary smoothly with center location to
achieve a slowly varying output signal (i.e., approximate translation invariance).



752 L. Wiskott and T. Sejnowski

the preceding 1a SFA module. All other modules in the same layer learn
the same input-output function just shifted by a multiple of four units.
The graphs show that second-degree monomials contributed significantly
(signals generated by first- and second-degree monomials have similar vari-
ance, so that coefficient values of first- and second-degree monomials can
be compared), which indicates that second-order features were extracted.
In general, coefficient values related to monomials of the same degree and
spread increase smoothly from periphery to center, forming bell-shaped or
half-sine-wave-shaped curves. This results in a fade-in/fade-out mechanism
applied to the extracted features as patterns move through the receptive
field. The general mechanism by which the network learns approximate
translation invariance is closely related to higher-order networks in which
translation invariance is achieved by weight sharing among monomials of
same degree and spread (see Bishop, 1995). The difference is that in those
networks, the invariance is built in by hand and without any fade-in/fade-
out.

What is the relative contribution of the linear a-sublayers and the quad-
ratic b-sublayers to the translation invariance? This can be inferred from the
η values plotted across layers. In Figure 19, a and b sublayers both contribute
to the slow variation of the output signals, although the linear a sublayers
seem to be slightly more important, at least beyond layer 1b. This holds
particularly for the first component, which is usually the half-sine-wave-
responding where-component, for which simple linear averaging seems to
be a good strategy at higher levels.

4.3.8 Is There an Implicit Similarity Measure Between Patterns? The rep-
resentation of a given pattern is similar at different locations: this is the
learned translation invariance. But how does the network compare differ-
ent patterns at the same location? What is the implicit similarity measure
between patterns given that we compare the representations generated by
the network in terms of the angles between the response vectors? Visual
inspection did not give an obvious insight into what the implicit similar-
ity measure would be, and also comparisons with several other similarity
measures were not conclusive. For example, the correlation coefficient be-
tween the maximum correlation between pairs of patterns over all possible
relative shifts on the one hand and the angle between the response vectors
(presenting the patterns in the center of the retina and using components 1,
2, and 4) on the other hand was only −0.47, and the respective scatterplot
was quite diffuse. There was no obvious similarity measure implicit in the
network.

4.3.9 How Well Does the System Generalize to Other Types of Patterns? We
have addressed this question with an experiment using two different types
of patterns: high-frequency patterns generated with a gaussian low-pass
filter with σ = 2 and low-frequency patterns generated with σ = 10 (see



Slow Feature Analysis 753

retina 1a 1b 2a 2b 3a 3b 4a 4b
layer

2.5

3

3.5

4
lo

g 1
0

23
3

Figure 19 (Example 4): η values of the nine signal components in the different
layers averaged over five simulation runs. Dashed and solid curves indicate
the training and test cases, respectively. The bottom curve in each of the two
bunches indicates the first component with the lowest η value, the top one the
ninth component. A difference of 0.397 = log10(2.5) between the dashed and
solid curves can be explained by the fact that there were 2.5 times more test than
training patterns. The remaining difference and the fact that the solid curves are
not monotonic and cross each other reflect limited generalization. The step from
retina to layer 1a is linear and performs only decorrelation; no information is lost.
Linear as well as nonlinear processing contribute to the translation invariance.
For the first where-component, the linear convergent processing seems to be
more important.

Figure 10 for patterns with different values of σ ). Otherwise, the training
and testing procedures were unchanged. Average angles and normalized
average ranks are given in Table 3 and indicate that (1) translation invariance
generalized well to the pattern type not used for training, since the average
angles did not differ significantly for the two different testing conditions
given the same training condition; (2) the invariance was in general better
learned with low-frequency patterns than with high-frequency patterns (al-
though at the cost of high variance), since the average angles were smaller
for all testing conditions if the network was trained with low-frequency
patterns; (3) low-frequency patterns were more easily discriminated than
high-frequency patterns, since the normalized average rank was on aver-
age lower by 0.04 for the test patterns with σ = 10 than for those with
σ = 2; (4) pattern recognition generalized only to a limited degree, since



754 L. Wiskott and T. Sejnowski

Table 3 (Example 4): Average Angles and Normalized Av-
erage Ranks for the Networks Trained for One Pattern Type
(σ = 2 or σ = 10) and Tested on the Training Data or Test
Data of the Same or the Other Pattern Type.

Testing⇒ σ = 2 σ = 10

⇓ Training Training Testing Training Testing

Average angles
σ = 2 15.2 1.5 18.1 2.2 19.0 1.6
σ = 10 11.5 7.0 6.4 4.3 8.9 5.3

Normalized average ranks
σ = 2 .08 .02 .13 .03 .15 .01
σ = 10 .19 .01 .06 .04 .09 .02

Note: All figures are means over five simulation runs with the stan-
dard deviation given in small numerals. Boldface numbers indi-
cate performances if a network was tested on the same pattern type
for which it was trained. The components useful for recognition
were determined on the training data. Training (testing) was done
with identical patterns for all networks within a row (column).

the normalized average rank increased on average by 0.06 if training was
not done on the pattern type used for testing. Notice that recognition per-
formance dropped (point 4) even though the invariance generalized well
(point 1). Response vectors for the pattern type not used for training seemed
to be invariant but similar for different patterns so that discrimination de-
graded.

4.4 Example 5: Other Invariances in the Visual System Model.

4.4.1 Training the Network. In this section, we extend our analysis to
other invariances. To be able to consider not only geometrical transforma-
tions but also illumination variations, patterns are now derived from ob-
ject profiles by assuming a Lambertian surface reflectance (Brooks & Horn,
1989). Let the depth profile of a one-dimensional object be given by q(u)

and its surface normal vector by n(u) := [−q′(u), 1]T/

√
q′2(u)+ 12 with

q′(u) := dq(u)/du. If a light source shines with unit intensity from direc-
tion l = (sin(α), cos(α)) (where unit vector (0, 1) would point away from
the retina and (1, 0) would point toward the right of the receptive field),
the pattern of reflected light is i(u) = max(0,n(u) · l). To create an object’s
depth profile, take gaussian white noise of length 30 pixels, low-pass filter
it with cyclic boundary conditions by a gaussian with a width σ randomly
drawn from the interval [2, 5], and then normalize it to zero mean and unit
variance. This is then taken to be the depth derivative q′(u) of the object. The



Slow Feature Analysis 755

depth profile itself could be derived by integration but is not needed here.
Applying the formula for the Lambertian reflectance given above yields the
gray-value pattern i(u).

Varying α (here between −60◦ and +60◦) yields different patterns for
the same object. In addition, the object can be placed at different locations
(centered anywhere in the receptive field), scaled (to a size between 2 and
60 pixels), rotated (which results in a cyclic shift up to a full rotation), and
varied in contrast (or light intensity, between 0 and 2). Thus, beside the fact
that each pattern is derived from a randomly drawn object profile, it has
specific values for the five parameters location, size, cyclic shift, contrast,
and illumination angle. If a certain parameter is not varied, it usually takes
a standard value, which is the center of the receptive field for the location,
a size of 30 pixels, no cyclic shift for rotation, a contrast of 1, and −30◦ for
the light source. Notice that location, size, and contrast have values that
can be uniquely inferred from the stimulus if the object is entirely within
the receptive field. Cyclic shift and illumination angle are not unique, since
identical patterns could be derived for different cyclic shift and illumination
angle if the randomly drawn object profiles happened to be different but
related in a specific way—for example, if two objects are identical except
for a cyclic shift. Between the presentation of two objects, there is usually
a pause of 60 time units with no stimulus presentation. Some examples of
stimulus patterns changing with respect to one of the parameters are given
in Figure 20 (top).

First, the network was trained for only a single invariance at a time. As
in the previous section, 20 patterns were usually used for training and 50
patterns for testing. The patterns varied in only one parameter and had
standard values for all other parameters. In a second series, the network
was trained for two or three invariances simultaneously. Again, the pat-
terns of the training stimulus varied in just one parameter at a time. The
other parameters either had their standard values, if they belonged to an in-
variance not trained for, or they had a random value within the valid range,
if they belonged to an invariance trained for. For example, if the network
was to be trained for translation and size invariance, each pattern varied in
either location or size while having a randomly chosen but constant value
for size or location, respectively (cf. Figure 20, bottom). All patterns had
standard parameter values for rotation, contrast, and illumination angle.
This training procedure comes close to the natural situation in which each
pattern occurs many times with different sets of parameters, is compu-
tationally convenient, and permits a direct comparison between different
experiments, because identical stimuli are used in different combinations.
In some experiments, all nonvaried parameters had their standard value;
in the example given above, the patterns varying in location had standard
size, and the patterns varying in size had standard location. In that case,
however, the network can learn translation invariance only for patterns of
standard size and, simultaneously, size invariance for patterns of standard



756 L. Wiskott and T. Sejnowski

0 100 200 300 400
time

4 30
4 15

0
15
30

re
tin

al
se

ns
or

0 100 200 300 400
time

4 30
4 15

0
15
30

re
tin

al
se

ns
or

Figure 20 (Example 5): (Top) Stimulus patterns of the same object generated
by changing object location from the extreme left to the extreme right in steps
of 1, object size from 2 to 30 and back to 2 in steps of 2, cyclic shift from 0 to
twice the object size in steps of 1 (resulting in two full rotations), contrast (or
light intensity) from 1/15 to 2 and back again in steps of 1/15, and illumination
angle from−60◦ to +60◦ in steps of 2◦. (Bottom) Stimulus for training translation
and size invariance. Patterns derived from two different objects are shown.
The first two patterns have constant but randomly chosen size and vary in
location. The second two patterns have constant but randomly chosen location
and vary in size. The first and third patterns were derived from the same object,
and so were the second and fourth patterns. Cyclic shift (rotation), contrast,
and illumination angle have their standard values. The pause between two
presentations of an object is only 14 or 24 time units instead of 60 in the graphs
for display purposes.

location. No invariances can be expected for patterns of nonstandard size
and location.

4.4.2 What Does the Network Learn? Figure 21 shows the first four com-
ponents of the output signal generated by a network trained for size invari-
ance in response to 10 objects of the training stimulus. In this case, the stimuli
consisted of patterns of increasing and decreasing size, like the second ex-
ample in Figure 20 (top). The response in this case and also for the other
invariances is similar to that in case of translation invariance (see Figure 11),
with the difference that no explicit where-information is visible. Thus, object
recognition should also be possible for these other invariances based on the
response vectors.

4.4.3 How Invariant Are the Representations? Figure 22 shows rank per-
centiles for the five invariances. For each but the top right graph, a network



Slow Feature Analysis 757

Figure 21 (Example 5): First four output signal components of the network
trained for size invariance in response to 10 objects of the training stimulus with
patterns changing in size only. At the bottom are also shown some trajectory
plots. Time axes range from 0 to 10× 119, where 119 corresponds to the presen-
tation of a single pattern including a pause of 60 time units with no stimulation.
All other axes range from −4 to +4. All signals are approximately normalized
to zero mean and unit variance.

was trained with 20 patterns varying in one viewing parameter and having
standard values for the remaining four ones. Fifty test patterns were used
to determine which of the output components were useful for recognition.
Fifty different test patterns were then used to determine the rank percentiles
shown in the graphs. Notice that the graph shown for translation invariance
differs from the bottom graph in Figure 14 because of differences in the ref-
erence location, the number of components used for recognition, and the
characteristics of the patterns.

The recognition performance was fairly good over a wide range of pa-
rameter variations, indicating that the networks have learned invariances
well. For varying illumination angle, however, the network did not gener-
alize if the angle had a different sign, that is, if the light comes from the
other side. The top right graph shows the performance of a network trained
for translation and size invariance simultaneously and tested for translation
invariance.

4.4.4 What Are the Recognition Performances? The normalized average
ranks were used as a measure of invariant recognition performance, as for
translation invariance in section 4.3. Normalized average ranks are listed in
Table 4 for single and multiple invariances. The numbers of output signal
components used in each experiment are shown in Table 5.

Although normalized average ranks for different invariances cannot be
directly compared, the figures suggest that contrast and size invariance are



758 L. Wiskott and T. Sejnowski

0 0.5 1 1.5 2 2.5 3
pattern contrast

0

10

20

30

40

50

ra
nk

5 60 5 40 5 20 0 20 40 60
illumination angle

0

10

20

30

40

50

ra
nk

Contrast invariance Illumination invariance

10 20 30 40 50 60
pattern size

0

10

20

30

40

50

ra
nk

6 10 6 5 0 5 10 15
cyclic shift

0

10

20

30

40

50

ra
nk

Size invariance Rotation invariance

5 30 5 20 5 10 0 10 20 30
pattern center location

0

10

20

30

40

50

ra
nk

5 30 5 20 5 10 0 10 20 30
pattern center location

0

10

20

30

40

50

ra
nk

Translation invariance
Networks trained for

Translation and size invariance
Networks trained for

Figure 22 (Example 5): Rank percentiles for different networks and invariances
and for 50 test patterns. The top right graph shows percentiles for a network
that has been trained for translation and size invariance simultaneously and
was tested for translation invariance; all other networks have been trained for
only one invariance and tested on the same invariance. The thick lines indicate
the median ranks or 50th percentiles. The dashed lines indicate the smallest
and largest ranks. The bottom and top thin lines indicate the 10th and 90th
percentiles, respectively. Chance level would be a rank of 25. Performance is
perfect for the standard view, but also relatively stable over a wide range.



Slow Feature Analysis 759

easier to learn than translation invariance, which is easier to learn than
rotation and illumination invariance.

Contrast invariance can be learned perfectly if enough training patterns
are given. This is not surprising, since the input patterns themselves al-
ready form vectors that simply move away from the origin in a straight line
and back again as required for invariant object recognition. That contrast
requires many training patterns for good generalization is probably because
a single pattern changing in contrast spans only one dimension. Thus, at
least 30 patterns are required to span the relevant space (since patterns have
a size of 30).

The performance is better for size invariance than for translation in-
variance, although translation is mathematically simpler, probably because
individual components of the input signal change more drastically with
translation than with scaling, at least around the point with respect to which
objects are being rescaled.

Illumination invariance is by far the most difficult of the considered in-
variances to learn, in part because there is no unique relationship between
illumination angle, the object’s depth profile, and the light intensity pat-
tern. This also holds to some degree for rotation invariance, on which the
network performs second worst. Illumination invariance seems to be par-
ticularly difficult to learn if the illumination angle changes sign—if the light
comes from the other side (cf. Figure 22).

It is also interesting to look at how well invariances have been implicitly
learned for which the network has not been trained. If trained for transla-
tion invariance, for instance, the network also learns size invariance fairly
well. Notice that this is not symmetric. If trained for size invariance, the net-
work does not learn translation invariance well. A similar relationship holds
for contrast and illumination invariances. Learning illumination invariance
teaches the network some contrast invariance, but not vice versa.

A comparison of the results listed in the bottom of Table 4 with those
listed in the top shows that performance degrades when the network is
trained on multiple invariances simultaneously. Closer inspection shows
that this is due to at least two effects. First, if trained on translation invari-
ance, for instance, patterns vary only in location and have standard size.
If trained on translation and size invariance, training patterns that vary in
location have a random rather than a standard size. Thus, the network has
to learn translation invariance not only for standard-size patterns but also
for nonstandard-size patterns. Thus, size becomes a parameter of the pat-
terns the network can represent, and the space of patterns is much larger
now. However, since testing is done with patterns of standard size (this is
important to prevent patterns from being recognized based on their size),
pattern size cannot be used during testing. This effect can be found in a
network trained only for translation invariance, but with patterns of ran-
dom size (compare entries pp (or pp ) with entries pp (or pp ) in
Table 6).



760
L

.W
iskottand

T.Sejnow
ski

 

Table 4: (Example 5): Normalized Average Ranks for Networks Trained for One, Two, or Three of the Five Invariances and
Tested with Patterns Varying in One of the Five Parameters.

Testing⇒ Location Size Rotation Contrast Illumination

⇓ Training Training Testing Training Testing Training Testing Training Testing Training Testing

Location .04 .01 .06 .01 .15 .02 .32 .03 .36 .02 .37 .01
Size .46 .01 .01 .00 .03 .01 .42 .00 .32 .02 .34 .01
Rotation .37 .01 .33 .03 .03 .01 .12 .01 .38 .02 .31 .02
Contrast .49 .01 .42 .04 .48 .01 .00 .00 .06 .03 .34 .05
Illumination .49 .00 .44 .03 .47 .01 .18 .02 .06 .01 .22 .01
Location and size .14 .04 .18 .03 .04 .01 .13 .01 .26 .04 .38 .05 .40 .02
Location and rotation .21 .06 .27 .06 .22 .04 .03 .01 .20 .03 .39 .01 .35 .04
Size and illumination .47 .01 .07 .03 .17 .05 .47 .01 .35 .02 .13 .04 .28 .03
Rotation and
illumination .38 .02 .33 .02 .13 .04 .22 .02 .41 .01 .22 .03 .26 .02
Location, size and
rotation .26 .02 .31 .00 .06 .00 .19 .02 .03 .01 .24 .02 .43 .02 .38 .01
Rotation, contrast, and
illumination .41 .04 .34 .01 .14 .06 .31 .08 .19 .04 .28 .03 .12 .02 .30 .04

Note: All figures are means over three simulation runs with the standard deviation given in small numerals. Boldface numbers indicate
performances if the network was tested on an invariance for which it was trained. Training performance was based on the same output
signal components as used for testing. Training (testing) was done with identical patterns for all networks within a row (column).



Slow Feature Analysis 761

Table 5 (Example 5): Numbers of Output Signal Components Useful for
Recognition.

Training ⇓ Testing⇒ Location Size Rotation Contrast Illumination

Location 6.0 0.0 6.0 1.0 4.3 0.6 5.3 0.6 5.0 1.7
Size 3.7 1.2 6.7 0.6 3.3 0.6 5.3 2.1 4.0 1.0
Rotation 6.7 0.6 5.7 2.3 8.0 1.0 4.3 1.5 4.7 1.5
Contrast 3.7 2.9 6.0 2.6 2.3 0.6 8.7 0.6 5.3 2.5
Illumination 4.7 1.2 5.7 3.1 3.7 1.2 8.7 0.6 6.7 0.6
Location and size 8.0 1.0 7.3 0.6 4.3 0.6 4.3 0.6 4.3 1.2
Location and rotation 6.3 1.2 6.3 0.6 5.0 1.7 4.3 1.5 4.3 0.6
Size and illumination 3.3 0.6 7.3 1.5 4.0 1.0 7.0 1.7 5.7 0.6
Rotation and

illumination 7.0 0.0 6.0 1.0 6.0 .00 6.0 1.0 5.0 2.0
Location, size,

and rotation 6.3 2.3 6.7 0.6 6.7 1.5 4.0 1.0 4.3 0.6
Rotation, contrast,

and illumination 5.0 1.0 5.3 0.6 4.0 1.0 5.7 0.6 4.7 1.5

Note: All figures are means over three simulation runs, with the standard deviation
given in small numerals. Networks were trained for one, two, or three of the five
invariances and tested with patterns varying in one of the five parameters. Boldface
numbers indicate experiments where the network was tested on an invariance for
which it was trained.

Second, the computational mechanisms by which different invariances
are achieved may not be compatible and so would interfere with each other
(compare entries pp (or pp ) with entries pp (or pp ) in Table 6).
Further research is required to investigate whether this interference between
different invariances is an essential problem or one that can be overcome by
using more training patterns and networks of higher complexity and more
computational power, and by propagating more components from one SFA
module to the next.

Table 6 shows that the amount of degradation due to each of the two ef-
fects discussed above can vary considerably. Translation invariance does not
degrade significantly if training patterns do not have standard size, but it
does if size invariance has to be learned simultaneously. Size invariance, on
the other hand, does not degrade if translation invariance has to be learned
simultaneously, but it degrades if the patterns varying in size are not at the
same (standard) location. Some of these differences can be understood intu-
itively. For instance, it is clear that the learned translation invariance is largly
insensitive to object size but that the learned size invariance is specific to
the location at which it has been learned. Evaluating the interdependencies
among invariances in detail could be the subject of further research.

4.4.5 How Does Performance Depend on the Number of Training Patterns and
Network Complexity? The dependencies on the number of training patterns



762 L. Wiskott and T. Sejnowski

Table 6 (Example 5): Normalized Average Ranks for the Network Trained
on One or Two Invariances and Tested on One Invariance.

Location ( , ) and Size ( , )pp .06 .01 pp .10 .03 pp .15 .02 pp .22 .02pp .16 .02 pp .18 .03 pp .05 .01 pp .13 .01pp .46 .01 pp .40 .00 pp .03 .01 pp .14 .04

Rotation ( ) and Illumination ( )pp .12 .01 pp .14 .02 pp .31 .02 pp .30 .01pp .17 .03 pp .22 .02 pp .28 .03 pp .26 .02pp .47 .01 pp .45 .03 pp .22 .01 pp .24 .01

Note: The icons represent the two-dimensional parameter space of two invariances
considered; all other parameters have standard values. In the top part of the table, for
instance, the vertical dimension refers to location and the horizontal dimension refers
to size. The icons then have the following meaning: = 20 training (or 50 test) input
patterns with standard size and varying location. = 20 (or 50) input patterns with
standard location and varying size. = 20 (or 50) input patterns with random but
fixed size and varying location. = 20 (or 50) input patterns with random but fixed
location and varying size. = input patterns and together—40 (or 100) input
patterns in total. = input patterns and together—40 (or 100) input patterns
in total. The same scheme also holds for any other pair of two invariances. Two icons
separated by a colon indicate a training and a testing stimulus. The experiments of
the top half of Table 4 would correspond to icons pp (or pp ) if the tested
invariance is the same as the trained one (boldface figures) and pp (or pp )
otherwise. The experiments of the bottom half of Table 4, where multiple invariances
were learned, would correspond to icons pp (or pp ) if the tested invariance is
one of the trained ones (boldface figures). The remaining experiments in the bottom
half cannot be indicated by the icons used here, because the networks are trained on
two invariances and tested on a third one.

and network complexity are illustrated in Figure 23. It shows normalized
average ranks on training and test stimuli for the five different invariances
and numbers of training patterns, as well as different numbers of compo-
nents propagated from one SFA module to the next. As can be expected,
training performance degrades and testing performance improves with the
number of training patterns. One can extrapolate that for many training
patterns, the performance would be about .050 for location, .015 for size,
.055 for rotation, .000 for contrast, and .160 for illumination angle, which
confirms the general results we found in Table 4 as to how well invari-
ances can be learned, with the addition that contrast can be learned per-
fectly given enough training patterns. Testing performance also improves
with network complexity, that is, with the number of propagated compo-
nents, except when overfitting occurs, which is apparently the case at the
bottom ends of the dashed curves. Contrast invariance generally degrades
with network complexity. This is due to the fact that the input vectors al-
ready form a perfect representation for invariant recognition (see above),



Slow Feature Analysis 763

0 0.05 0.1 0.15 0.2 0.25
normalized average rank on test data

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
no

rm
.a

v.
ra

nk
on

tr
ai

n.
da

ta

diagonal
illumin.
contrast
rotation
size
location

0 0.05 0.1 0.15 0.2 0.25
normalized average rank on test data

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
no

rm
.a

v.
ra

nk
on

tr
ai

n.
da

ta

diagonal
illumin.
contrast
rotation
size
location

Figure 23 (Example 5): Normalized average ranks on training and test stimuli
for the five invariances. Solid lines and filled symbols indicate the dependency
on the number of training patterns, which was 10, 20, 40, and 80 from the lower
right to the upper left of each curve. Dashed lines and empty symbols indicate the
dependency on the number of components propagated from one SFA module
to the next one, which was 5, 7, 9, 11, 13, and 15 from the upper end of each
curve to the lower end. The direction of increasing number of components can
also be inferred from the polarity of the dashing, which follows the pattern 5
- — - — 7 - — . . . - — 15 (i.e., long dashes point toward large numbers of
propagated components). If not varied, the number of training patterns was
20 and the number of propagated components was 9. Notice that the curves
cross for these standard values. The solid curve for contrast invariance is shifted
slightly downward to make it distinguishable from the dashed curve. Each point
is an average over three simulation runs; standard deviations for points with
standard parameter sets can be taken from Table 4.

which can only be degraded by further processing, and the fact that each
pattern spans only one dimension, which means that overfitting occurs eas-
ily.

5 Discussion

The new unsupervised learning algorithm, slow feature analysis (SFA), pre-
sented here yields a high-dimensional, nonlinear input-output function that
extracts slowly varying components from a vectorial input signal. Since the
learned input-output functions are nonlinear, the algorithm can be applied
repeatedly, so that complex input-output functions can be learned in a hi-
erarchical network of SFA modules with limited computational effort.



764 L. Wiskott and T. Sejnowski

SFA is somewhat unusual in that directions of minimal variance rather
than maximal variance are extracted. One might expect that this is particu-
larly sensitive to noise. Noise can enter the system in two ways. First, there
may be an additional input component carrying noise. Assume an input
signal as in Example 1 plus a component x4(t) that has a constant value plus
some small noise. x4(t)would seem to be most invariant. However, normal-
izing it to zero mean and unit variance would amplify the noise such that
it becomes a highly fluctuating signal, which would be discarded by the
algorithm. Second, noise could be superimposed on the input signal that
carries the slowly varying features. This could change the1values of the ex-
tracted signals significantly. However, a slow signal corrupted by noise will
usually be slower than a fast signal corrupted by noise of the same amount,
so that the slow signal will still be the first one extracted. Only if the noise
is unevenly distributed over the potential output signal components can
one expect the slow components not to be correctly discovered. Temporal
low-pass filtering might help dealing with noise of this kind to some extent.

The apparent lack of an obvious similarity measure in the network of
section 4.3 might reflect an inability to find it. For instance, the network
might focus on features that are not well captured by correlation and not
easily detectable by visual inspection. Alternatively, no particular similarity
measure may be realized, and similarity may be more a matter of chance.
On the negative side, this contradicts the general goal that similar inputs
should generate similar representations. However, on the positive side, the
network might have enough degrees of freedom to learn any kind of simi-
larity measure in addition to translation invariance if trained appropriately.
This could be valuable, because simple correlation is actually not the best
similarity measure in the real world.

5.1 Models for Unsupervised Learning of Invariances. Földiák (1991)
presented an on-line learning rule for extracting slowly varying features
based on models of classical conditioning. This system associated the exist-
ing stimulus input with past response activity by means of memory traces.
This implemented a tendency to respond similarly to stimuli presented suc-
cessively in time, that is, a tendency to generate slow feature responses. A
weight growth rule and normalization kept the weights finite and allowed
some useful information to be extracted. A simple form of decorrelation
of output units was achieved by winner-take-all competition. This, how-
ever, did not lead to the extraction of different slow features but rather to
a one-of-n code, where each output unit codes for a certain value of the
slow feature. The activity of a unit was linear in the inputs, and the output
was a nonlinear function of the total input and the activities of neighboring
units. Closely related models were also presented in (Barrow and Bray 1992,
O’Reilly and Johnson 1994, and Fukushima 1999) and applied to learning
lighting and orientation invariances in face recognition in (Stewart Bartlett
and Sejnowski 1998). These kinds of learning rules have also been applied to



Slow Feature Analysis 765

hierarchical networks with several layers, most clearly in (Wallis and Rolls
1997). A more detailed biological model of learning invariances also based
on memory traces was presented by Eisele (1997). He introduced an addi-
tional memory trace to permit association between patterns not only in the
backward direction but also in the forward direction.

Another family of on-line learning rules for extracting slowly varying
features has been derived from information-theoretic principles. Becker and
Hinton (1992) trained a network to discover disparity as an invariant vari-
able of random-dot stereograms. Two local networks, called modules, re-
ceived input from neighboring but nonoverlapping parts of the stereogram,
where each module received input from both images. By maximizing the
mutual information between the two modules, the system learned to extract
the only common aspect of their input—the disparity, given that disparity
changed slowly. This is an example of spatial invariance, in contrast to
temporal invariance considered so far. Spatial and temporal invariance are
closely related concepts, and algorithms can usually be interchangeably ap-
plied to one or the other domain. An application to the temporal domain, for
instance, can be found in (Becker 1993). For an overview, see (Becker 1996).

The information-theoretic approach is appealing because the objective
function is well motivated. This becomes particularly obvious in the binary
case, where the consequent application of the principles is computationally
feasible. However, in the case of continuous variables, several approxima-
tions need to be made in order to make the problem tractable. The resulting
objective function to be maximized is

I := 0.5 log
V(a+ b)
V(a− b)

, (5.1)

where a and b are the outputs of the two modules and V(·) indicates the
variance of its argument. If we set a := y(t) and b := y(t − 1), assuming
discretized time, this objective function is almost identical to the objectives
formalized in equations 2.1 through 2.4. Thus, the information-theoretic
approach provides a systematic motivation but not a different optimization
problem. Zemel and Hinton (1992) have generalized this approach to extract
several invariant variables. a and b became vectors, and V(·) became the
determinant of the covariance matrix. The output units then preferentially
produced decorrelated responses.

Stone and Bray (1995) have presented a learning rule that is based on an
objective function similar to that of Becker and Hinton (1992) or equation 2.1
and which includes a memory trace mechanism as in (Földiák 1991). They
define two memory traces,

ỹ :=
∑∞

t′=1 exp(−t′/τs) y(t− t′)∑∞
t′′=1 exp(−t′′/τs)

,

ȳ :=
∑∞

t′=1 exp(−t′/τl) y(t− t′)∑∞
t′′=1 exp(−t′′/τl)

, (5.2)



766 L. Wiskott and T. Sejnowski

one on a short timescale (ỹ with a small τs) and one on a long timescale
(ȳ with a large τl). The objective function is defined as

F := 0.5 log
〈(y− ȳ)2〉
〈(y− ỹ)2〉 , (5.3)

which is equivalent to equation 5.1 in the limit τs → 0 and τl →∞. The de-
rived learning rule performs gradient ascent on this objective function. The
examples in (Stone and Bray 1995) are linearly solvable so that only linear
units are used. They include an example where two output units are trained.
Inhibitory input from the first to the second output unit enforces decorre-
lation. Examples in (Stone 1996) are concerned with disparity estimation,
which is not linearly solvable and requires a multilayer network. Backpropa-
gation was used for training with the error signal given by−F. A similar sys-
tem derived from an objective function was presented in (Peng, et al. 1998).

Mitchison (1991) presented a learning rule for linear units that is also
derived from an objective function like that of equation 2.1. He pointed out
that the optimal weight vector is given by the last eigenvector of matrix
〈ẋẋT〉. In the on-line learning rule, weights were prevented from decaying
to zero by an explicit normalization, such as

∑
w2

i = 1. The extracted output
signal would therefore depend strongly on the range of the individual input
components, which may be arbitrarily manipulated by rescaling the input
components. For instance, if there were one zero input component xi = 0,
an optimal solution would be wi = 1 and wi′ = 0 for all i′ 6= i, which
would be undesirable. Therefore, it seems to be preferable to prevent weight
decay by controlling the variance of the output signal and not the sum over
the weights directly. The issue of extracting several output components
was addressed by introducing a different bias for each output component,
which would break the symmetry, if the weight space for slowest output
components were more than one-dimensional. However, redundancy can
probably be better reduced by the decorrelation constraint of equation 2.4
also used in other systems, with the additional advantage that suboptimal
output-signal components also can be extracted in an ordered fashion.

Many aspects of the learning algorithm presented here can be found in
these previous models. Particularly the optimization problem considered
by Becker and colleagues is almost identical to the objective function and
constraints used here. The novel aspect of the system presented here is
its formulation as a closed-form learning algorithm rather than an on-line
learning rule. This is possible because the input signal is expanded nonlin-
early, which makes the problem linear in the expanded signal. The solution
can therefore be found by sphering and applying principal component anal-
ysis to the time-derivative covariance matrix. This has several consequences
that distinguish this algorithm from others:

• The algorithm is simple and guaranteed to find the optimal solution in
one shot. Becker and Hinton (1995) have reported problems in finding



Slow Feature Analysis 767

the global maxima, and they propose several extensions to avoid this
problem, such as switching between different learning rules during
training. This is not necessary here.

• Several slow features can be easily extracted simultaneously. The learn-
ing algorithm automatically yields a large set of decorrelated output
signals, extracting decorrelated slow features. (This is different from
having several output units representing only one slow feature at a
time by a one-of-n code.) This makes it particularly easy to consider
hierarchical networks of SFA modules, since enough information can
be propagated from one layer to the next.

• The learning algorithm presented here suffers from the curse of di-
mensionality. The nonlinear expansion makes it necessary to compute
large covariance matrices, which soon becomes computationally pro-
hibitive. The system is therefore limited to input signals of moderate
dimensionality. This is a serious limitation compared to the on-line
learning rules. However, this problem might be alleviated in many
cases by hierarchical networks of SFA modules, where each module
has only a low-dimensional input, such as up to 12 dimensions. Exam-
ple 4 shows such a hierarchical system where a 65-dimensional input
signal is broken down by several small SFA-modules.

5.2 Future Perspectives. There are several directions in which slow fea-
ture analysis as presented here can be investigated and developed further:

• Comparisons with other learning rules should be extended. In par-
ticular, the scaling with input and output dimensionality needs to be
quantified and compared.

• The objective function and the learning algorithm presented here are
amenable to analysis. It would be interesting to investigate the optimal
responses of an SFA module and the consequences and limitations of
using SFA modules in hierarchical networks.

• Example 2 demonstrates how several slowly varying features can be
extracted by SFA. It also shows that the decorrelation constraint is
insufficient to extract slow features in a pure form. It would be inter-
esting to investigate whether SFA can be combined with independent
component analysis (Bell & Sejnowski, 1995) to extract the truly inde-
pendent slow features.

• Example 5 demonstrates how SFA modules can be used in a hierar-
chical network for learning various invariances. It seems, however,
that learning multiple invariances simultaneously leads to a signifi-
cant degradation of performance. It needs to be investigated whether
this is a principal limitation or can be compensated for by more training
patterns and more complex networks.



768 L. Wiskott and T. Sejnowski

• In the network of Example 4, there was no obvious implicit measure
of pattern similarity. More research is necessary to clarify whether
there is a hidden implicit measure or whether the network has enough
capacity to learn a specific measure of pattern similarity in addition to
the invariance.

• Finally, it has to be investigated whether invariances can also be learned
from real-world image sequences, such as from natural scenes, within
a reasonable amount of time. Some work in this direction has been
done by Wallis and Rolls (1997). They trained a network for transla-
tion and other invariances on gray-value images of faces, but they did
not test for generalization to new images. The number of images was
so small that good generalization could not be expected.

It is clear that SFA can be only one component in a more complex self-
organizational model. Aspects such as attention, memory, and recognition
(more sophisticated than implemented here) need to be integrated to form
a more complete system.

Acknowledgments

We are grateful to James Stone for very fruitful discussions about this project.
Many thanks go also to Michael Lewicki and Jan Benda for useful comments
on the manuscript. At the Salk Institute, L. W. was partially supported by
a Feodor-Lynen fellowship by the Alexander von Humboldt-Foundation,
Bonn, Germany; at the Innovationskolleg, L. W. has been supported by
HFSP (RG 35-97) and the Deutsche Forschungsgemeinschaft (DFG).

References

Barrow, H. G., & Bray, A. J. (1992). A model of adaptive development of complex
cortical cells. In I. Aleksander & J. Taylor (Eds.), Artificial neural networks II:
Proc. of the Intl. Conf. on Artificial Neural Networks (pp. 881–884). Amsterdam:
Elsevier.

Becker, S. (1993). Learning to categorize objects using temporal coherence. In
C. L. Giles, S. J. Hanson, & J. D. Cowan (Eds.), Advances in neural information
processing systems, 5 (pp. 361–368). San Mateo, CA: Morgan Kaufmann.

Becker, S. (1996). Mutual information maximization: Models of cortical self-
organization. Network: Computation in Neural Systems, 7(1), 7–31.

Becker, S., & Hinton, G. E. (1992). A self-organizing neural network that discov-
ers surfaces in random-dot stereograms. Nature, 355(6356), 161–163.

Becker, S., & Hinton, G. E. (1995). Spatial coherence as an internal teacher for
a neural network. In Y. Chauvin & D. E. Rumelhart (Eds.), Backpropagation:
Theory, architecture and applications (pp. 313–349). Hillsdale, NJ: Erlbaum.



Slow Feature Analysis 769

Becker, S., & Plumbley, M. (1996). Unsupervised neural network learning pro-
cedures for feature extraction and classification. J. of Applied Intelligence, 6(3),
1–21.

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach
to blind separation and blind deconvolution. Neural Computation, 7, 1129–
1159.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford Uni-
versity Press.

Brooks, M. J., & Horn, B. K. P. (Eds.). (1989). Shape from shading. Cambridge, MA:
MIT Press.

Eisele, M. (1997). Unsupervised learning of temporal constancies by pyramidal-
type neurons. In S. W. Ellacott, J. C. Mason, & I. J. Anderson (Eds.), Mathe-
matics of neural networks (pp. 171–175). Norwell, MA: Kluwer.

Fleet, D. J., & Jepson, A. D. (1990). Computation of component image velocity
from local phase information. Intl. J. of Computer Vision, 5(1), 77–104.

Földiák, P. (1991). Learning invariance from transformation sequences. Neural
Computation, 3, 194–200.

Fukushima, K. (1999). Self-organization of shift-invariant receptive fields. Neural
Networks, 12(6), 791–801.

Fukushima, K., Miyake, S., & Ito, T. (1983). Neocognitron: A neural network
model for a mechanism of visual pattern recognition. IEEE Trans. on Systems,
Man, and Cybernetics, 13, 826–834.

Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor
filter model of simple receptive fields in cat striate cortex. J. of Neurophysiology,
58, 1233–1258.

Konen, W., Maurer, T., & von der Malsburg, C. (1994). A fast dynamic link match-
ing algorithm for invariant pattern recognition. Neural Networks, 7(6/7), 1019–
1030.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1(4), 541–551.

Mitchison, G. (1991). Removing time variation with the anti-Hebbian differential
synapse. Neural Computation, 3(3), 312–320.

Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1993). A neurobiological
model of visual attention and invariant pattern recognition based on dynamic
routing of information. J. of Neuroscience, 13(11), 4700–4719.

Oram, M. W., & Perrett, D. I. (1994). Modeling visual recognition from neurobi-
ological constraints. Neural Networks, 7(6/7), 945–972.

O’Reilly, R. C., & Johnson, M. H. (1994). Object recognition and sensitive periods:
A computational analysis of visual imprinting. Neural Computation, 6(3), 357–
389.

Peng, H. C., Sha, L. F., Gan, Q., & Wei, Y. (1998). Energy function for learning
invariance in multilayer perceptron. Electronics Letters, 34(3), 292–294.

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework
for parallel distributed processing. In D. E. Rumelhart & J. L. McClelland
(Eds.), Parallel distributed processing (Vol. 1, pp. 45–76). Cambridge, MA: MIT
Press.



770 L. Wiskott and T. Sejnowski

Stewart Bartlett, M., & Sejnowski, T. J. (1998). Learning viewpoint invariant
face representations from visual experience in an attractor network. Network:
Computation in Neural Systems, 9(3), 399–417.

Stone, J. V. (1996). Learning perceptually salient visual parameters using
spatiotemporal smoothness constraints. Neural Computation, 8(7), 1463–
1492.

Stone, J. V., & Bray, A. J. (1995). A learning rule for extracting spatio-temporal
invariances. Network: Computation in Neural Systems, 6(3), 429–436.

Theimer, W. M., & Mallot, H. A. (1994). Phase-based binocular vergence control
and depth reconstruction using active vision. CVGIP: Image Understanding,
60(3), 343–358.

Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer-
Verlag.

Wallis, G., & Rolls, E. (1997). Invariant face and object recognition in the visual
system. Progress in Neurobiology, 51, 167–194.

Zemel, R. S., & Hinton, G. E. (1992). Discovering viewpoint-invariant relation-
ships that characterize objects. In R. P. Lippmann, J. E. Moody, & D. S. Touret-
zky (Eds.), Advances in neural information processing systems, 3 (pp. 299–305).
San Mateo, CA: Morgan Kaufmann.

Received January 29, 1998; accepted June 1, 2001.


